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Abstract—The widespread deployment of machine learning
applications in ubiquitous environments has sparked interests in
exploiting the vast amount of data stored on mobile devices. To
preserve data privacy, Federated Learning has been proposed to
learn a shared model by performing distributed training locally
on participating devices and aggregating the local models into
a global one. However, due to the limited network connectivity
of mobile devices, it is not practical for federated learning to
perform model updates and aggregation on all participating
devices in parallel. Besides, data samples across all devices are
usually not independent and identically distributed (IID), posing
additional challenges to the convergence and speed of federated
learning.

In this paper, we propose FAVOR, an experience-driven control
framework that intelligently chooses the client devices to partic-
ipate in each round of federated learning to counterbalance the
bias introduced by non-IID data and to speed up convergence.
Through both empirical and mathematical analysis, we observe
an implicit connection between the distribution of training data
on a device and the model weights trained based on those
data, which enables us to profile the data distribution on that
device based on its uploaded model weights. We then propose
a mechanism based on deep Q-learning that learns to select a
subset of devices in each communication round to maximize a
reward that encourages the increase of validation accuracy and
penalizes the use of more communication rounds. With extensive
experiments performed in PyTorch, we show that the number
of communication rounds required in federated learning can
be reduced by up to 49% on the MNIST dataset, 23% on
FashionMNIST, and 42% on CIFAR-10, as compared to the
Federated Averaging algorithm.

I. INTRODUCTION

As the primary computing resource for billions of users,
mobile devices are constantly generating massive volumes
of data, such as photos, voices, and keystrokes, which are
of great value for training machine learning models. How-
ever, due to privacy concerns, collecting private data from
mobile devices to the cloud for centralized model training
is not always possible. To efficiently utilize end-user data,
Federated Learning (FL) has emerged as a new paradigm of
distributed machine learning that orchestrates model training
across mobile devices [1]. With federated learning, locally
trained models are communicated to a server for aggregation,
without collecting any raw data from users. Federated learning
has enabled joint model training over privacy-sensitive data
in a wide range of applications, including natural language
processing, computer vision, and speech recognition.
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However, unlike in a server-based environment, distributed
machine learning on mobile devices is faced with a few
fundamental challenges, such as the limited connectivity of
wireless networks, unstable availability of mobile devices, and
the non-IID distributions of local datasets which are hard to
characterize statistically [1]-[4]. Due to these reasons, it is not
as practical to perform machine learning on all participating
devices simultaneously in a synchronous or semi-synchronous
manner as is in a parameter-server cluster. Therefore, as
a common practice in federated learning, only a subset of
devices are randomly selected to participate in each round
of model training to avoid long-tailed waiting times due to
unstable network conditions and straggler devices [1, 5].

Since the completion time of federated learning is dom-
inated by the communication time, Konecny et al. [6, 7]
proposed structured and sketched updates to decrease the
time it takes to complete a communication round. McMa-
han et al. [1] presented the Federated Averaging (FEDAVG)
algorithm, which aims to reduce the number communication
rounds required by averaging model weights from client de-
vices instead of applying traditional gradient descent updates.
FEDAVG has also been deployed in a large-scale system [4]
to test its effectiveness.

However, existing federated learning methods have not
solved the statistical challenges posed by heterogeneous local
datasets. Since different users have different device usage
patterns, the data samples and labels located on any in-
dividual device may follow a different distribution, which
cannot represent the global data distribution. It has been
recently pointed out that the performance of federated learning,
especially FEDAVG, may significantly degrade in the presence
of non-IID data, in terms of the model accuracy and the
communication rounds required for convergence [8]-[10]. In
particular, FEDAVG randomly selects a subset of devices in
each round and averages their local model weights to update
the global model. The randomly selected local datasets may
not reflect the true data distribution in a global view, which
inevitably incurs biases to global model updates. Furthermore,
the models locally trained on non-1ID data can be significantly
different from each other. Aggregating these divergent models
can slow down convergence and substantially reduce the model
accuracy [8].

In this paper, we present the design and implementation
of FAVOR, a control framework that aims to improve the
performance of federated learning through intelligent device
selection. Based on reinforcement learning, FAVOR aims to



accelerate and stabilize the federated learning process by
learning to actively select the best subset of devices in each
communication round that can counterbalance the bias intro-
duced by non-IID data.

Since privacy concerns have ruled out any possibility of
accessing the raw data on each device, it is impossible to
profile the data distribution on each device directly. However,
we observe that there is an implicit connection between the
distribution of the training samples on a device and the
model weights trained based on those samples. Therefore,
our main intuition is to use the local model weights and the
shared global model as states to judiciously select devices
that may contribute to global model improvement. We propose
a reinforcement learning agent based on a Deep Q-Network
(DQN), which is trained through a Double DQN for increased
efficiency and robustness. We carefully design the reward
signal in order to aggressively improve the global model
accuracy per round as well as to reduce the total number of
communication rounds required. We also propose a practical
scheme that compresses model weights to reduce the high
dimensionality of the state space, especially for big models,
e.g., deep neural network models.

We have implemented FAVOR in a federated learning simu-
lator developed from scratch using PyTorch!, and evaluated it
under a variety of federated learning tasks. Our experimental
results on the MNIST, FashionMNIST, and CIFAR-10 datasets
have shown that FAVOR can reduce the required number of
communication rounds in federated learning by up to 49% on
the MNIST, by up to 23% on FashionMNIST, and by up to
42% on CIFAR-10, as compared to the FEDAVG algorithm.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce how federated learning
works in general and show how non-IID data poses challenges
to existing federated learning algorithms. We demonstrate how
to properly select client devices at each round to improve the
performance of federated learning on non-1ID data.

A. Federated Learning

Federated learning (FL) trains a shared global model by
iteratively aggregating model updates from multiple client de-
vices, which may have slow and unstable network connections.
Initially, eligible client devices first check-in with a remote
server. The remote server then proceeds federated learning
synchronously in rounds. In each round, the server randomly
selects a subset of available client devices to participate in
training. The selected devices first download the latest global
model from the server, train the model on their local datasets,
and report their respective model updates to the server for
aggregation.

We formally introduce FL in the context of a C-class
classification problem, which is defined over a compact feature
space X and a label space ) = [C], where [C] = 1,---,C.
Let (x,y) denote a particular labeled sample. Let f : X — S

'Our implementation is available as an open-source GitHub repository,
located at https://github.com/iqua/flsim.

denote the prediction function, where S = {z| 21021 z; =
1,z; = 0,Vi € [C]}. That is, the vector valued function f
yields a probability vector z for each sample x, where f;
predicts the probability that the sample belongs to the :th class.

Let the vector w denote model weights. For classification,
the commonly used training loss is cross entropy, defined as

c
lw) :=Eg y~p {Z 1,—;log fi(x,w)

i=1
C
= Zp(y = 1)Egy—i[log fi(x, w)],
i=1

The learning problem is to solve the following optimization
problem:

e}
minimize,, Zp(y = 1)Eqjy—illog fi(x, w)]. (1)

i=1
In federated learning, suppose there are N client devices
in total. The kth device has m(*) data samples following
the data distribution p(*), which is a joint distribution of the
samples {z,y} on this device. In each round ¢, K devices
are selected (at random in the original FL), each of which
downloads the current global model weights w;_; from the
server and performs the following stochastic gradient descent

(SGD) training locally:

wi = w,_y —Vl(w,y) *
c

= w1 — nZM’“(y = |)VwEajy=illog fi(z, we-1)],
i=1

where 7 is the learning rate. Note that in such notation with
ex . (k) .

pectations, w, ~ can be a result one or multiple epochs of
local SGD training [1].

Once wgk) is obtained, each participating device k reports
a model weight difference Agk) to the FL server [1], which is
defined as

k k k
A,g ) .= w,g ) _ 'wi_)l.

Devices can also upload their local models 'wgk) directly,
but transferring Agk) is more amenable to compression and
communication reduction [4]. After the FL server has collected
updates from all K participating devices in round ¢, it performs
the federated averaging (FEDAVG) algorithm to update the
global model:

K k K c
Ay = Zk:lm(k)Ag )/Zkzlm(k)7
wy — wye_1 + Ay

B. The Challenges of Non-1ID Data Distribution

FEDAVG has been shown to work well approximating the
model trained on centrally collected data, given that the data
and label distributions on different devices are I1ID [1]. How-
ever, in reality, data owned by each device are typically non-
IID, i.e., p(k’) are different on different devices, due to different
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Fig. 1: Training a CNN model on non-IID MNIST data.

user preferences and usage patterns. When data distributions
are non-IID, FEDAVG is unstable and may even diverge [8].

This is due to the inconsistency between the locally per-
formed SGD algorithm, which aims to minimize the loss
value on m(¥) local samples on each device and the global
objective of minimizing the overall loss on all Zle m*)
data samples. As we keep fitting models on different devices
to heterogeneous local data, the divergence among the weights
w*) of these local models will be accumulated and eventually
degrades the performance of learning [8, 10], leading to more
communication rounds before training converges. Reducing
the number of communication rounds in federated learning
is crucially essential for mobile devices, which have a limited
computation capacity and communication bandwidth.

We use an experiment to demonstrate that non-IID data may
slow down the convergence of federated learning if devices
are randomly selected in each round for model aggregation.
Instead of random selection, we show that selecting devices
with a clustering algorithm can help to even out data distri-
bution and speed up convergence.

In our experiment, we train a two-layer CNN model with
PyTorch on the MNIST dataset (containing 60,000 samples)
until the model achieves a 99% test accuracy. We consider
100 devices in total, each running on a different thread, and
we train the CNN model under the IID and non-IID settings,
respectively. For the IID setting, the 60,000 samples are
randomly distributed among 100 devices, such that each device
owns 600 samples. For the non-IID setting, each device still
owns 600 samples, yet 80% of which come from a dominant
class and the remaining 20% belong to other classes. For
example, a “0”-dominated device has 480 data samples with
the label “0”, while the remaining 120 data samples have labels
evenly distributed among “1” to ““9”. In each round, ten devices
are selected to participate in federated learning. Note that FL
selects only a subset of all devices at each round to balance
computation complexity and convergence rate, and to avoid
excessively long waiting times for model aggregation [1, 4],
which is also discussed in Sec. IV-D.

FEDAVG randomly selects ten devices to participate in each
round of training. As shown in Fig. 1, FEDAVG takes 47

rounds to achieve the target accuracy in the IID setting?.
However, FEDAVG takes 163 rounds to achieve the 99% target
accuracy on non-IID data, which more than triples the number
of communication rounds.

To reduce the required communication rounds under the
non-IID setting, we then tuned the device selection strategy.
While in FL, it is impossible to peek into the data distribution
of each device, we observe that there is an implicit connection
between the data distribution on a device and the model
weights trained on that device. Therefore, we may profile each
device by analyzing the local model weights after the first
round.

We provide some rationale for this observation. According
to (2), given the initial global model weights wjy;, the
local weights on device k after one epoch of SGD can be
represented by

C
W = wini — 0> PP (y = i) VasEoly—illog fi(, winir)].
=1

The weight divergence/ between device k and device k' can
be measured as || wgk) - wgk) ||, where k, k" € [K]. Then,
by using a similar bounding technique adopted in [8], we can
derive the following bound for weight divergence in the first
round:

k' k
™) —wi™ <
C
Nmaz(Winit) Y | p* ) (y = i) = p® (y = i) |,
=1
where gmaw(w) = maxiczl || VwEmly:i[logfi(w’w)} ||

This implies that even if local models are trained with the same
initial weights w;,;;, there is an implicit connection between
the discrepancy of data distributions on device k and %', which
is the term Y || p*)(y = i) — p®(y = i) |, and their
weight divergence.

Based on the sights above, we first let each of the 100
devices download the same initial global weights (randomly
generated) and perform one epoch of SGD based on local
data to get wgk), k=1,...,100. We then apply the K-Center
clustering algorithm [11] onto {wgl), ..,wgloo)} to cluster
the 100 devices into 10 groups. In each round, we randomly
select one device from each group to participate in FL training,
which still results in 10 simultaneously participating devices
per round. As shown in Fig. 1, the K-Center algorithm takes
131 rounds to reach the target accuracy under the non-IID
setting, which is 32 rounds less than the vanilla FEDAVG
algorithm. This example implies that it is possible to improve
the performance of federated learning by carefully selecting
the set of participating devices in each round, especially under
the non-IID data setting.

C. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL) is the learning process of
an agent that acts in corresponding to the environment to

2The same setting costs FEDAVG 50 rounds on TensorFlow in [1].



maximize its rewards. The recent success of RL [12, 13]
comes from the capability that RL agents learn from the
interaction with a dynamic environment. Specifically, at each
time step ¢, the RL agent observes states s; and performs
an action a;. The state s; of the environment then transits to
s¢+1, and the agent will receive reward ;. The state transitions
and rewards follow a Markov Decision Process (MDP) [14],
which is a discrete time stochastic control process, denoted by
a sequence Si, a1, 71, S2, - - .. The objective
of RL is to maximize the expectation of the cumulative
discounted return R = S°1_ ~'~1r,, where v € (0,1] is a
factor discounting future rewards.

The RL agent seeks to learn a cheat sheet that points out
the actions leading to the maximum cumulative return under a
particular state. Value-based RL algorithms formally uses an
action-value function Q(s;,a) to estimate an expected return
starting from state s;:

< Tt—1, Sty Qs - -

Qr(st,a) 1 = Ew[z Y i k—alse, af
k=1

= E3t+11a[7"t +7Qx(8t41,0a)|st, at}y

where 7 is the policy mapping from states to probabilities of
selecting possible actions. The optimal action-value function
Q*(s¢,a) is the cheat sheet sought by the RL agent, which
is defined as the maximum expectation of the cumulative
discounted return starting from s;:

Q*(51,0) = Ea,.,[re + Y max Q* (s11,0)[s1.a). ()

Then, we could apply function approximation techniques to
learn a parameterized value function (s, a;0;) approxi-
mating the optimal value function Q*(s:,a). The one-step
lookahead r; 4+ v max, Q(S:+1,a; 0;) becomes the target that
Q(8¢,a;0;) learns to be. Typically, a deep neural network
(DNN) is used to represent the function approximator [15].
The RL learning problem becomes minimizing the MSE loss
between the target and the approximator, which is defined as:

0(0¢) = (ry + 7 max Q(8141,a;0;) — Q(s4,a;04))  (4)

III. DRL FOR CLIENT SELECTION

We formulate device selection for federated learning as a
deep reinforcement learning (DRL) problem. Based on the
formulation, we present a federated learning workflow driven
by DRL in Sec. III-B. We then introduce the challenges of
dealing with high-dimensional models in federated learning.
Finally, we describe training the DRL agent with the double
Deep Q-learning Network (DDQN) [16].

The per-round FL process can be modeled as a Markov
Decision Process (MDP), with state s represented by the
global model weights and the model weights of each client
device in each round. Given a state, the DRL agent takes
an action a to select a subset of devices that perform local
training and update the global model. Then a reward signal r
is observed, which is a function of the test accuracy achieved
by the global model so far on a held-out validation set. The

objective is to train the DRL agent to converge to the target
accuracy for federated learning as quickly as possible.

In the proposed framework, the agent does not need to
collect or check any data samples from mobile devices—
only model weights are communicated—thus preserving the
same level of privacy as the original FL does. It solely
relies on model weight information to determine which device
may improve the global model the most, since there is an
implicit connection between the data distribution on a device
and its local model weights obtained by performing SGD
on those data. In fact, in Sec. III-C we will show that even
after dimension reduction, the divergence between local model
weights is still obvious and contains information to guide
device selection.

A. The Agent based on Deep Q-Network

Suppose there is a federated learning job on N available
devices with a target accuracy (2. In each round, using a Deep
Q-Network (DQN) [15], K devices are selected to participate
in the training. Considering limited available traces from fed-
erated learning jobs, DQN can be more efficiently trained and
can reuse data more effectively than policy gradient methods
and actor-critic methods.

State: Let the state of round ¢ be represented by a vector
st = (whwgl), e ng)), where w; denotes the weights of
the global model after round ¢, and wgl), . ,ng) are model
weights of the NV devices, respectively.

The agent collocates with the FL server and maintains a
list of model weights {w*)|k € [N]}; a particular w*) is
updated in round ¢ only if device k is selected for training
and the resulting Agk) is received by the FL server. Therefore,
there is no extra communication overhead introduced for the
devices.

The resulting state space can be huge, e.g., a CNN model
can contain millions of weights. It is challenging to train a
DQN with such a large state space. In practice, we propose
to apply an effective and lightweight dimension reduction
technique on the state space, i.e., on model weights, which
will be described in detail in Sec. III-C.

Action: At the beginning of each round ¢, the agent needs
to decide to select which subset of K devices from the NV
devices. This selection would have resulted in a large action
space of size (%), which complicates RL training. We propose
a trick to keep the action space small while still leveraging the
intelligent control provided by the DRL agent.

In particular, the agent is trained by selecting only one out
of N devices to participate in FL. per round based on DQN,
while in testing and application the agent will sample a batch
of top-K clients to participate in FL. That is, the DQN agent
learns an approximator of the optimal action-value function
Q* (8¢, a) through a neural network, which estimates the action
that maximizes the expected return starting from s;. The action
space is thus reduced to {1,2,..., N}, where a = ¢ means
that device ¢ is selected to participate in FL.

Once DQN has been trained to approximate Q*(s,a),
during testing, in round ¢ the DQN agent will compute



{Q*(st,a)la € [N]} for all N actions. Each action-value
indicates the maximum expected return that the agent can get
by selecting a particular action a at state s;. Then we select
the K devices, each corresponding to a different action a, that
lead to the top-K values of Q*(s¢,a).

Reward: We set the reward observed at the end of each
round t tobe r, = E@=Y 1 ¢ =1,..., T, where w; is the
testing accuracy achieved by the global model on the held-out
validation set after round ¢, ) is the target accuracy, and =
is a positive constant that ensures that r, grows exponentially
with the testing accuracy w;. We have r; € (—1,0], since
0 < wy < Q < 1. The federated learning stops when w; = 2,
at which point r; reaches its maximum value of 0.

The DQN agent is trained to maximize the expectation of
the cumulative discounted reward given by

T T
R= Zyt_lrt = Z’yt_l(E(wt_Q) - 1),
t=1 t=1

where 7 € (0,1] is a factor discounting future rewards.

We now explain the motivations behind the two terms
== and —1 in 7. The first term, 2@t~ incentivizes the
agent to select devices that achieve a higher test accuracy w;. =
controls how fast reward r; grows with w;. In general, as ML
training proceeds, the model accuracy will increase at a slower
pace, which means |w; —w;_1| decreases as round ¢ increases.
Therefore, we use an exponential term to amplify the marginal
accuracy increase as FL progresses into later stages. = is set
to 64 in our experiments.

The second term, —1, encourages the agent to complete
training in fewer rounds, because the more rounds it takes,
the less cumulative reward the agent will receive.

B. Workflow

Fig. 2 shows how our system FAVOR performs federated
learning with a DRL agent selecting devices in each round,
following the steps below:

Step 1: All N eligible devices check in with the FL server.

Step 2: Each device downloads the initial random model
weights w;,;; from the server, performs local SGD
training for one epoch, and returns the resulting model
weights {wgk), k € [N]} to the FL server.

Step 3: In round ¢, where ¢ = 1,2,..., upon receiving the
uploaded local weights, the corresponding copies of local
model weights stored on the server are updated. The DQN
agent computes Q(s;, a; @) for all devices a = 1,..., N.

Step 4: The DQN agent selects K devices corresponding to
the top-K values of Q(st,a;0), a = 1,...,N. The
selected K devices download the latest global model
weights w; and perform one epoch of SGD locally to
obtain {w™, [k € [K]}.

Step 5: {wgi)1|k: € [K]} are reported (uploaded) to the server
to compute w;,; based on FEDAVG. Move into round
t + 1 and repeat Steps 3-5.

Steps 3-5 will be repeated until completion, e.g., until a
target accuracy is reached or after a certain number of rounds.

D D E - E E o
Check-in
Initialize

{wi® |k € [N]}

A

DRL Agent

\
Selection

Reporting
w2 B {wl?lk € K}

DRL Agent
\ wo V . \} T
<«—0 Selection |Step 4
— 0 Reporting

(k)
s {wi" |k € K]}

Fig. 2: The federated learning workflow with FAVOR.

Note that the above workflow can be easily tweaked to let each
selected client upload the model difference A (as compared
to the last version of the local model) instead of the new
local model itself, without changing the underlying logic. The
FL server can always use the A to reconstruct a copy of the
corresponding local model stored on it.

When a device k has new training data, it will request the
global model weights w; and perform local SGD training for
one epoch as Step 2, which generates new local model weights
wgk). Then the device pushes wgk) to the FL server, and the
FL server updates the state s; to make the DRL agent aware
of the device with updated data. It should be noted that data
on each device remain unchanged during the DRL training to
ensure that the training follows the Markov Decision Process.

The overhead introduced is minimum since no extra compu-
tation/communication overhead is added to devices. The only
overhead is that now the FL server needs to store a copy
of the latest local model weights from each device in order
to form the state s,. However, the FL server is deployed in
cloud, where provisions sufficient on-demand computational
and storage capacity .

C. Dimension Reduction

One issue of the proposed DQN agent is that it uses the
weights of the global model and all local models as the state,
which leads to a large state space. Many deep neural networks
(e.g., CNN) have millions of weights, making it challenging
to train the DQN agent with such a high dimensional state
space. To reduce the dimension of the state space, we propose
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to apply principle component analysis (PCA) to model weights
and use the compressed model weights to represent states
instead.

Specifically, we compute the PCA loading vectors of differ-
ent principal components only based on local model weights
for t = 1, ie., {wgk),k € [N]}, obtained in Step 2. In
the subsequent rounds ¢ = 2,3,..., such loading vectors
are reused to obtain first several principal components of
{wgk), k € [N]}, through linear transformation, without fitting
the PCA model again. Therefore, the overhead to compress
model weights in subsequent rounds is negligibly small.

We demonstrate the effectiveness of using PCA-compressed
model weights to differentiate between data distributions
through a simple experiment. Consider a two-layer CNN
model (with 431,080 model weights in total) to be trained
with federated learning on 100 devices, running PyTorch, on
the MNIST dataset. Data samples are distributed in the same
way as the experiment in Sec. II: each client has 80% of
its data samples belonging to a dominant class, while the
remaining 20% of its samples have random labels. After five
epochs of local SGD training in Round 1, we project the
model weight vectors of the 100 devices, {wgk),k € [N]},
onto a two-dimensional space of the first and second principal
components.

As shown in Fig. 3, different shapes (or colors) indicate
local models trained on devices with different dominant labels.
For example, all the yellow “+” signs denote the compressed
local models in Round 1 from those devices with a dominant
label “6”. Even reduced from 431,080 dimensions to only
two dimensions and even at Round 1, we can observe a clus-
tering effecting of local models according to their dominant
labels. Therefore, in the evaluation in Sec. IV, we use PCA-
compressed model weights as states to enable efficient training
of the DQN agent.

D. Training the Agent with Double DON

We propose to use the double deep Q-learning network
(DDQN) to learn the function Q*(s;,a). Q-learning provides
a value estimation for each potential action a at state s,
based on which devices are selected. However, the original
Q-learning algorithms can be unstable since they indirectly
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Environment
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Action a; O :

FL server D
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Fig. 4: The DDQN Agent interacting with the FL server.

Agent r

Features
I

optimize the agent performance by learning an approximator
Q(s,a;0;) to the optimal action-value function Q*(s,a).
DDQN adds another value function Q(s,a;8’;) to stabilize
the action-value function estimation. The idea behind DDQN
is that the network is frozen every M updates. DDQN adds
stability to the action-value evaluation, which is less prone to
“jittering.”

To train the DRL agent, the FL server first performs random
device selection to initialize the states. As shown in Fig. 4, the
states are fed into the one of the double DQNs Q(s¢, a; 6y).
The DQN generates an action a to select a device for the FL
server. After several rounds of FL training, the DRL agent has
sampled a few action-state pairs, with which the agent learns
to solve the (4) as:

0(8,) = (V7" 9 — Q(s4,a;0,))>,

Y;DoubleQ

where is the target at round ¢ defined as

Y;/DoubleQ C=rp 4y m(?,x Q(St+1, Q; 015) (5)

=1t +7Q(ss, argmax Q(s¢, a; 04); 0).  (6)

(6) uses two acton-value functions to update YtDOUbleQ, in
which 6; is the online parameters updated per time step, and
the @', is the frozen parameters to add stability to action-
value estimation. The action-value function Q(s;11,a;6;) is
updated to minimize ¢;(6;) by gradient descent, i.e.,

0141 = 0, + a(Y,77"C — Q(s4,0;6,))V,Q(s1, a; 0,),
where « is a scalar step size.

IV. EVALUATION

We have implemented FAVOR with PyTorch in around
2000 lines of code, which we have released as an open-
source project. With the Python threading library, FAVOR can
simulate a large number of devices with lightweight threads,
each running real-world PyTorch models.

We evaluated FAVOR by training popular CNN models
on three benchmark datasets: MNIST, FashionMNIST, and
CIFAR-10, with FEDAVG and K-Center as the groups of
comparison. We evaluated the accuracy of the trained models
using the testing set from each dataset. Our experimental
results show that FAVOR can reduce the communication rounds
by up to 49% on the MNIST, up to 23% on FashionMNIST,
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Fig. 5: Training the DRL agent.

and up to 42% on CIFAR-10, compared to the FEDAVG
algorithm. We briefly describe our methodology and settings
as follows.

Datasets and models: We explored different combinations
of hyper-parameters for the CNN models on different datasets
and chose the hyper-parameters leading to the best perfor-
mance of FEDAVG.

o« MNIST. We train a CNN model with two 5x5 convo-
lution layers. The first layer has 20 output channels and
the second has 50, with each layer followed by 2x2 max
pooling. On each device, the batch size is ten and the
epoch number is five.

o FashionMNIST. We train a CNN model with two 5x5
convolution layers. The first layer has 16 output channels
and the second has 32, with each layer followed by 2x2
max pooling. On each device, the batch size is 100 and
the epoch number is five.

+ CIFAR-10. We train a CNN model with two 5x5 convo-
lution layers. The first layer has six output channels and
the second having 16, with each layer followed by 2x2
max pooling. On each device, the batch size is 50 and
the epoch number is five.

Performance metrics: In federated learning, due to the lim-
ited computation capacity and network bandwidth of mobile
devices, reducing the number of communication rounds is cru-
cially important. Thus, we use the number of communication
rounds as the performance metric of FAVOR.

A. Training the DRL agent

We train the DRL agent on different datasets with 100
available devices. The DDQN model in the DRL agent consists
of two two-layer MLP networks, with 512 hidden states. The
input size is 10,100, where we have 101 model weights (i.e.,
the global weights w and the local weights {w® |k € [100]}
from 100 devices) reduced to 100 dimensions. The output
size of the second layer is 100. Each output passing through
a softmax layer becomes the probability of selecting the
particular device. We train the DRL agent on an AWS EC2
instance p2.2xlarge with a K80 GPU. The DDQN model is
lightweight, and each training iteration takes seconds on GPU.
Reducing model weights from 431,080 to 100 dimensions
takes minutes by sklearn.decomposition.PCA.

Fig. 5 plots the training progress of the DRL agent on three
FL tasks. An episode starts at the initialization of a federated
learning job and ends when the job converges to the target
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Fig. 6: Accuracy v.s. communication rounds on different
levels of non-IID MNIST data.

accuracy €). The total return is the cumulative discounted
reward R obtained in one episode. The target accuracy € is
set to 99% for training on the MNIST, 85% for training on
FashionMNIST, and 55% for training on CIFAR-10.

B. Different Levels of Non-IID Data

We investigate different levels of non-1ID data to testify the
efficiency of FAVOR. We include the performance of FEDAVG
and K-Center as a comparison. At each round, the number of
selected devices K is set to 10, as in [1].

We use o to denote the four different levels of non-1ID data:
o = 1.0 indicating that data on each device only belong to one
label, o = 0.8 indicating that 80% of the data belong to one
label and the remaining 20% data belong to other labels, o =
0.5 indicating that 50% of the data belong to one label and the
remaining 50% data belong to other labels, o = 0 indicating
the data one each device is IID and ¢ = H indicating that
data on each device evenly belong to two labels. We plot the
test-set accuracy v.s. the communication rounds of federated
learning on the three benchmarks in Fig. 6, Fig. 7, and Fig. 8.
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Fig. 7: Accuracy v.s. communication rounds on different
levels of non-IID FashionMNIST data.

Each entry in Table I shows the number of communication
rounds necessary to achieve a test-set accuracy of 99% for
the CNN on MNIST, 85% for FashionMNIST, and 55% for
CIFAR-10. It should be noted that the italic numbers indicate
that the model converges to a lower accuracy than the test-
set accuracy. The model on MNIST with data distribution of
o = 1.0 converges to a test-set accuracy of 96%. The models
trained on FashionMNIST with data distribution of 0 = 1.0
and o = H both converge to a test-set accuracy of 80%. The
model trained on CIFAR-10 with data distribution of o = 1.0
converges to a test-set accuracy of 50%.

Our experimental results show there is no guarantee that K-
Center can always outperform FEDAVG. Devices selected from

o MNIST  FashionMNIST  CIFAR-10
FEDAVG 0 (IID) 55 14 47
FEDAVG 1.0 1517 1811 1714
K-Center 1.0 1684 2132 1871
FAVOR 1.0 1232 1497 1383
FEDAVG H 313 1340 198
K-Center H 421 1593 188
FAVOR H 272 1134 114
FEDAVG 0.8 221 52 87
K-Center 0.8 126 62 74
FAVOR 0.8 113 43 61
FEDAVG 0.5 59 19 67
K-Center 0.5 67 21 52
FAVOR 0.5 59 16 50

TABLE I: The number of communication rounds to reach
a target accuracy for FAVOR v.s. FEDAVG and K-Center.

Fig. 8: Accuracy v.s. communication rounds on different
levels of non-IID CIFAR-10 data.
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Fig. 9: PCA on model weights of FL training with MNIST.
w1, ws ..., ws are the global model weights at Round 1-5.

the K-Center clusters may introduce more bias to federated
learning than devices selected randomly by FEDAVG. How-
ever, FAVOR has reduced the number of communication rounds
by up to 49% on the MNIST, up to 23% on FashionMNIST,
and up to 42% on CIFAR-10, compared to the FEDAVG
algorithm.

C. Device Selection and Weight Updates

We save the global model weights and local model weights
per round when we train the two-layer CNN on MNIST with
o = 0.8. The saved model weights are reduced to two-
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dimension vectors by PCA and plotted in Fig. 9. By examining
the model weights trained with FEDAVG and FAVOR, respec-
tively, Fig. 9 shows that FAVOR updates the global model with
a larger weight update A than FEDAVG in early rounds, which
leads to a faster convergence speed.

D. Increasing Parallelism

We also studied the performance of FAVOR on different
numbers of selected devices. The CIFAR-10 dataset is dis-
tributed to 100 devices with the non-IID level at ¢ = 0.8.
We apply FAVOR, FEDAVG, and K-Center to train the same
CNN on CIFAR-10 separately. The number of selected devices
K is set to 10, 50, and 100 to study the performance of
federated learning with different parallelism. Fig. 10 shows
that increasing the parallelism does not reduce the number
of communication rounds and even increases the number of
communication rounds.

V. RELATED WORK

Federated learning allows machine learning models to be
trained on mobile devices in a distributed fashion without
violating user privacy. Existing studies on federated learning
have mostly focused on improving its efficiency. We classify
the existing literature into the following two categories:

Communication efficiency. Mobile devices typically have
unstable and expensive connections, and existing works have
attempted to improve the communication efficiency of fed-
erated learning. Konecny et al. [6, 7] proposed structured

and sketched updates to decrease the completion time of
each communication round. Bonawitz et al. [3] developed a
secure aggregation protocol that enables a server to perform
the computation of high-dimensional data from the devices,
which is widely deployed in production environments [4,
17]. McMahan et al. [1] presented the Federated Averaging
(FEDAVG) algorithm that allows devices to perform local
training of multiple epochs, which further reduces the number
of communication rounds by averaging model weights from
the client devices. Nishio et al. [18] proposed a resource-aware
selection algorithm that maximizes the number of participating
devices in each round. Sattler et al. [9] proposed a compression
framework, Sparse Ternary Compression (STC), that reduces
the communication costs and remains robust to non-IID data.
FAVOR applies DRL to select the best subset of participating
devices to minimize the number of communication rounds,
which is orthogonal to these studies on communication effi-
ciency.

Sample efficiency. Unlike centralized machine learning,
federated learning performs training on non-IID data on de-
vices. Zhao et al. [8] presented a mathematical demonstration
to show that non-IID data reduces the accuracy of federated
learning by a substantial margin, and proposed to push a
small set of uniform distributed data to participating devices.
Downloading extra data further increases communication cost
and computation workload for the devices. Mehryar et al. [10]
proposed an agnostic federated learning framework for fairness
to avoid biases due to non-IID data from the devices. In
contrast, FAVOR is the first work that counterbalances the bias
from different non-IID data by dynamically constructing the
subset of participating devices with DRL techniques.

VI. CONCLUDING REMARKS

In this paper, we presented our design and implementation
of FAVOR, an experience-driven federated learning framework
that performs active device selection to minimize the com-
munication rounds of FL training. We argue that non-IID
data exacerbates the divergence of model weights on partic-
ipating devices, and increases the number of communication
rounds of federated learning by a substantial margin. With
both mathematical demonstrations and empirical studies, we
found the implicit connection between model weights and the
distribution of data that the model is trained on. We proposed
to actively select a specific subset of devices to participate
in training at each round, in order to counterbalance the bias
introduced by non-IID data on each device and to speedup FL
training by minimizing the number of communication rounds.
In particular, we designed a DRL-based agent that applies
the DDQN algorithm to select the best subset of devices to
achieve our objectives. We have implemented an open-source
prototype of FAVOR with PyTorch in more than 2K lines
of code and evaluated it with a variety of ML models. An
extensive comparison with FL training jobs by FEDAVG has
shown that FL training with FAVOR has reduced the number of
communication rounds by up to 49% on the MNIST dataset,
up to 23% on FashionMNIST, and up to 42% on CIFAR-10.
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