
Distributed Machine Learning
with a Serverless Architecture

Hao Wang1, Di Niu2 and Baochun Li1
1University of Toronto, {haowang, bli}@ece.utoronto.ca 2University of Alberta, dniu@ualberta.ca

Abstract—The need to scale up machine learning, in the
presence of a rapid growth of data both in volume and in variety,
has sparked broad interests to develop distributed machine
learning systems, typically based on parameter servers. However,
since these systems are based on a dedicated cluster of physical or
virtual machines, they have posed non-trivial cluster management
overhead to machine learning practitioners and data scientists.
In addition, there exists an inherent mismatch between the
dynamically varying resource demands during a model training
job and the inflexible resource provisioning model of current
cluster-based systems.

In this paper, we propose SIREN, an asynchronous distributed
machine learning framework based on the emerging serverless
architecture, with which stateless functions can be executed in the
cloud without the complexity of building and maintaining virtual
machine infrastructures. With SIREN, we are able to achieve a
higher level of parallelism and elasticity by using a swarm of
stateless functions, each working on a different batch of data,
while greatly reducing system configuration overhead. Further-
more, we propose a scheduler based on Deep Reinforcement
Learning to dynamically control the number and memory size of
the stateless functions that should be used in each training epoch.
The scheduler learns from the training process itself, in pursuit
for the minimum possible training time given a cost. With our
real-world prototype implementation on AWS Lambda, extensive
experimental results have shown that SIREN can reduce model
training time by up to 44%, as compared to traditional machine
learning training benchmarks on AWS EC2 at the same cost.

I. INTRODUCTION

It has been widely acknowledged that machine learning
(ML) has become fundamentally important in a wide range of
research areas, including computer vision, speech recognition,
and natural language processing. There has been an imperative
need to improve the performance when training machine
learning models, especially in the presence of larger volumes
of data and increasingly complex models.

To fulfill such a need, a wide range of distributed machine
learning frameworks based on the parameter server architec-
ture have been proposed, such as MXNet and TensorFlow.
In these frameworks, multiple workers, each operating on a
different batch of data, continuously read and update the model
parameters using gradient-like algorithms. These parameters
are persistently stored and asynchronously updated on a num-
ber of parameter servers.

Existing distributed machine learning (ML) frameworks
heavily rely on the parallelism achieved by a dedicated cluster
of physical servers or virtualized instances. One needs to
specify the quantity and types of these servers to be employed
for each machine learning training job. Yet, for a general

ML practitioner or data scientist, provisioning a physical or
virtualized computing platform is a lengthy and error-prone
process. For example, it is challenging to choose the optimal
configuration from numerous combinations of instance types
and settings [1] on AWS EC2, where over 100 instance types
are available. In addition, maintaining the launched cluster is
costly [2]—users have to pay for every second that the cluster
is alive, even if it may largely remain idle during the trial-
and-error process of model training.

Following the footsteps of traditional virtual machines and
Docker containers, serverless (or Function-as-a-Service) ar-
chitectures, represented by AWS Lambda and Google Cloud
Functions, have emerged as a burgeoning computation model
to further reduce costs and improve manageability in cloud
computing. With serverless architectures, developers do not
need to manage dedicated servers or instances for their appli-
cations. Instead, they only need to define a set of stateless
functions with access to a common data store. Due to its
lightweight nature, ease of management, and ability to rapidly
scale up, serverless computation has become the trend of
building next-generation web services and applications [3].

In this paper, we present the design and implementation
of SIREN, a new framework for distributed machine learning
based solely on serverless architectures. Our key insights are
motivated by the following facts.

First, most current ML training jobs are data parallel,
in the sense that a large number of training samples need
to be processed by different workers in parallel. Combined
with cloud storage, data parallelism aligns with the serverless
architecture naturally, in which we can launch a number of
stateless functions, each accessing a different batch of data,
without managing and maintaining any servers.

Second, the amount of resources invested into a ML training
job should be dynamically adjusted as the job progresses,
in the best interest of improving the model quality [4]. Not
only does the model quality improve at a variable rate during
training, but the dependency of model quality improvement on
the amount of resources invested is also non-linear and com-
plex. For most models and algorithms, the resource demand
decreases as the number of training iterations increases and the
target loss stabilizes. Therefore, we need a mechanism to ad-
just resource provisioning dynamically throughout the model
training process, without launching or shutting down server
instances (not even Docker containers). With the serverless
architecture, we can easily scale resources up or down by
controlling the number of functions launched at any point.

Finally, ML training is inevitably a trial-and-error process,
which frequently leaves a traditional physical or virtual cluster
under-utilized, e.g., a user may need to stop her job, tune
hyper-parameters [5] and rerun it. With serverless computa-
tion, a user only needs to pay for the execution time of his/her
functions, rather than the time that virtual machines remain
active.

SIREN is designed to achieve a high level of parallelism
and elasticity by using a flexible swarm of serverless functions
— called Lambda functions in the context of AWS Lambda
— in each epoch of model training, where an epoch is
defined as one complete presentation of the entire dataset to
the training process. We propose a new hybrid synchronous
parallel (HSP) mode of operation in SIREN: Lambda functions
asynchronously push the updated model parameters to the
common cloud storage, while a barrier is imposed at the end
of each training epoch to allow optimally tuned scheduling
decisions.

A highlight of our contribution is a new scheduler based on
deep reinforcement learning, designed to dynamically adjust
the number of Lambda functions and their memory allocated
in each epoch in order to minimize the potential training time
under a given cost. With deep reinforcement learning, our
scheduler in SIREN learns the best way to trade off between
model quality and cost from its previous experience of training
similar models, without requiring a large amount of data to
kick-start.

We have implemented SIREN based on AWS Lambda and
have evaluated SIREN on training various ML models. A
comparison with training ML models on AWS EC2 clusters
has shown that ML training with SIREN on AWS Lambda has
reduced the completion time of a ML training job by up to
44% for the same quality of models at the same cost.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief background of distributed
machine learning systems, and show benefits of serverless
(Function-as-a-Service) architectures over parameter server
architectures on the Infrastructure-as-a-Service cloud. We then
demonstrate convincing evidence that the resource demand in
a typical ML training job varies over time dynamically.

A. Distributed ML Training and Parameter Servers

A ML model (such as deep neural networks, support vector
machines, and decision trees) with parameters w maps certain
input features to an output, which could be a label in a
classification problem or a continuous value in a prediction
problem. The output is referred to as the label throughout this
paper. Suppose we have a set of M training samples, where
the ith training sample consists of an input feature vector xi
and its label yi. The ML training process is to adjust the set
of model parameters w to

minimizew F (w) :=

M∑
i=1

`(w;xi, yi) (1)

where the loss function `(w;xi, yi) represents the gap between
the predicted label and true label for the ith training sample.
The traditional centralized gradient descent algorithm solves
this problem by iteratively performing the update:

wk+1 := wk − η
M∑
i=1

∇`(wk;xi, yi),

where the model updates in the kth synchronized iteration only
happens after the gradients ∇`(wk;xi, yi) have been com-
puted for all M training samples. The algorithm can also be
parallelized by partitioning the entire training dataset among
multiple workers, each computing the gradients ∇`(wk;xi, yi)
only for its local samples, leading to a bulk synchronous
parallel (BSP) implementation [6].

The parameter server architecture [7, 8] is widely adopted
to perform distributed ML training. One fundamental idea
of current parameter server systems is to replace Bulk Syn-
chronous Parallel (BSP) with Stale Synchronous Parallel (SSP)
[9] or Bounded Delay Synchronization of MXNet, allowing
the progress of straggler workers to be out of sync with other
workers to a certain extent.

With a popular stochastic gradient descent (SGD) algorithm
[10] using mini-batches, each worker in a parameter server
cluster asynchronously computes an error gradient based on
a mini-batch of local data, and pushes this gradient to the
parameter server to update the model. Note that gradients in
mini-batches from different workers may arrive at the param-
eter server in an arbitrary order. From a global perspective,
let the set Ξk ⊂ {1, . . . ,M} represent the kth mini-batch
whose gradient ∇`(wk−τk,i

;xi, yi) reaches the server from
any worker in the cluster. Then, the SGD algorithm using
mini-batches performs the following model update for the kth
mini-batch at the parameter server:

wk+1 := wk − η
∑
i∈Ξk

∇`(wk−τk,i
;xi, yi),

where τk,i denotes the staleness of the model, wk−τk,i
, used

to compute gradient ∇`(wk−τk,i
;xi, yi) for sample i. The

staleness of the model is caused by the fact that when a
worker has pulled the model from the parameter server and
is computing its local gradient based on that, the model on
the server has already been updated by many other workers.
It is theoretically shown that both SGD [9] (with a single
sample in each mini-batch) and SGD with mini-batches [10]
can converge for a wide variety of convex and non-convex
loss functions under certain assumptions, including bounded
staleness.

B. Serverless v.s. IaaS Architectures

With a simple example, we now evaluate the cost of
running ML training jobs in the serverless (Function-as-a-
Service) architecture, as compared to running them in the
Infrastructure-as-a-Service (IaaS) architecture. IaaS provides
a convenient abstraction of virtual machines by multiplexing
them over the underlying physical machines. In contrast, the
serverless architecture provides the abstraction of stateless

Loss Value Time (s) Cost ($)

20 functions 0.009725 237.40 0.019
8-core EC2 0.009779 307.87 0.029
150 functions 0.009699 50.04 0.031
X functions 0.009761 202.55 0.019

TABLE I: Loss values, time and cost of different resource
configurations, after the ML training job converges.

functions over the programming language runtime. Unlike
IaaS, there are only two steps to run an application on the
serverless architecture: submit an application to the serverless
cloud platform, and then invoke the application as stateless
functions with necessary input data. The pricing structure
in serverless cloud platforms, e.g., AWS Lambda, is based
on the number of functions invoked and the time they have
been executing. Existing work [11] has shown that running
web applications on a serverless cloud platform is more cost
effective than using an IaaS cloud service, such as AWS EC2.

To compare both training times and monetary cost, we
trained a logistic regression model using (1) SGD on AWS
Lambda; and (2) an AWS EC2 instance. The training dataset
is a 100,000×2 matrix stored in AWS S3 storage. With AWS
Lambda, functions were configured with 256 MB memory and
each function call incurred a cost of $0.00000417 per second.
We invoked 20 concurrent stateless functions, each acting as
a worker in the SGD algorithm described previously. Each
function (worker) directly reads and updates the model stored
in Amazon S3. With EC2, we chose a c5.2xlarge instance
with 8 CPU cores and 16 GB memory, which costs $0.34 per
hour, equivalent to $0.0000919 per second. On this instance,
we ran MXNet, a typical parameter server framework, which
automatically parallelizes the workload across 8 cores with
SGD. The model was stored and processed in memory. The
training is terminated when the change of loss value is below
a certain threshold.

As shown in Table I and Fig. 1, the serverless cloud (with 20
functions) reduced the training time needed to reach the same
loss by 22.9%. In the meantime, even though only one instance
was used in EC2, the serverless cloud incurred a cost that is
34.5% lower. It is worth noting that in this comparison, we
excluded the instance setup time in EC2, while in reality, users
do have to pay for this portion of time, including launching
the instance and building a software environment on it. This
example has demonstrated that a substantial amount of cost
savings can be achieved by replacing dedicated IaaS cloud
clusters with a serverless architecture.

C. Resource Provisioning Policies

Now that we have provided a convincing argument for using
a serverless architecture, it is still a major challenge to find
the optimal number of functions, as well as their memory size
configurations, to be used for each ML training job. Needless
to say, ML training is a complex non-deterministic process in
nature, and it is hard to obtain a priori knowledge on a job’s
runtime characteristics.

20 functions 8-core EC2 150 functions X functions

L
o

s
s
 v

a
lu

e

0
.0

1
0

0
.0

1
5

Time (s)

0 100 200 300

Cost ($)

0.005 0.010 0.015 0.020 0.025 0.030

Fig. 1: The time and cost of training a logistic regression
model on AWS Lambda and EC2. Each point indicates a
training epoch.

Furthermore, it is generally believed that the resources
required by a ML training job change across iterations [4],
e.g., a smaller amount of resources is needed in later phases
as the model quality tends to stabilize. Yet, state-of-the-art
frameworks only use a fixed amount of resources (e.g., a
fixed number of machines or cores) throughout a training job,
primarily because they rely on a dedicated cluster of instances
that have already been launched. With the elasticity offered
by the serverless architecture, our search space for optimal
resource provisioning also extends to dynamic policies.

To illustrate how the training time and cost vary with
different amounts of resources provisioned, we further trained
the same logistic regression model on AWS Lambda with two
additional configurations: (1) using 150 functions throughout
the job, and (2) X functions, using 120 functions only in
the first epoch, 20 functions in intermediate epochs, and 10
functions in the last epoch, where an epoch is defined as
one complete presentation of the training dataset to the SGD
algorithm.

From Table I and Fig. 1, we can see that using 150 functions
is faster to converge, yet costs much more. As Fig. 1 suggests,
the dynamic resource provisioning scheme, X functions, not
only strikes a reasonable balance between training time and
cost, but also effectively reduces the job completion time, as
compared to the static scheme of using 20 functions, at the
same cost of $0.019.

However, it is a significant challenge to determine the best
function configuration policy in the serverless architecture,
especially when both static and dynamic policies are possible.
A highlight of this work is a new scheduler based on deep
reinforcement learning (DRL), with the objective of deter-
mining the optimal number of functions and their memory
configurations that should be employed in each epoch of the
job, based only on online observations of the ongoing job’s
runtime environment.

III. SIREN: ARCHITECTURAL OVERVIEW

We show an architectural overview of SIREN in Fig. 2.
SIREN consists of a local client that makes resource scheduling
decisions using a deep reinforcement learning (DRL) agent,
and a serverless cloud platform (such as Amazon Lambda)
that launches stateless functions for the ML training job based
on these scheduling decisions.

DRL
Agent

statesaction Function
Manager

Local Client

Step 5

resource scheme function status

Step 4
Scheduler

Step 1
Cloud

code
package

Step 3

User-
Defined
Model

API Libs

Step 2
Stateless
Functions

Fig. 2: The system architecture and workflow of SIREN.

First, a code package must be deployed to the serverless
cloud platform, containing the user-defined ML model and
the libraries that it depends upon. Then, a swarm of stateless
functions are launched according to the initial resource scheme
(i.e., the number of functions and their memory sizes) to
perform SGD-based training for the first epoch. At the end
of the first epoch, function status and statistics about the job
will be collected and fed as states into the DRL agent at
the local client, which will take actions and make resource
scheduling decisions for the next epoch. SIREN adaptively
adjusts resource scheduling decisions as epochs progress in
a training job: different numbers of functions with different
memory configurations may be launched in different epochs.

A. SGD on Stateless Functions

SIREN adopts an SGD algorithm using mini-batches and
runs over a number of Lambda functions, each of which acts
like a worker in a traditional parameter server architecture.
A major difference between SIREN and parameter server
architectures is that no parameter server exists to handle
model parameter updates in SIREN. Instead, both the data and
model are stored in a common data store (e.g., Amazon S3),
accessible by all the functions. Each function reads the current
model from the common storage, calculates a gradient based
on a mini-batch of training data, and then directly updates
the model in the common storage with the newly computed
gradient. Thus, the entire architecture is serverless.

In SIREN, we propose a hybrid synchronous parallel (HSP)
computing mode, as shown in Fig. 3. Within each epoch, all
the functions can update the model asynchronously (or more
precisely, in a SSP fashion [9]), while there is a synchro-
nization barrier imposed at the end of each epoch to allow
intelligent resource scheduling for the next epoch.

With HSP, in epoch t, the kth mini-batch Ξt,k (sorted by
the times that their gradients are computed) will lead to the
following model update:

wt,k+1 := wt,k − η
∑
i∈Ξt,k

∇`(wt,k−τt,k,i
;xi, yi), (2)

which is executed by any function that becomes available.
In addition, wt,0 is equal to the model w at the end of
epoch t − 1. HSP is efficient in a serverless architecture

…

epoch t epoch t+1 time

Fetching input Computing Updating parameters

mini-batch

…ft,i

ft,i+1

ft+1,i

Fig. 3: The hybrid synchronous parallel (HSP) processing
on the serverless cloud.

because the launched functions are homogeneous, leading to
a low synchronization overhead in each epoch. Invoking and
terminating functions are also lightweight with a serverless
cloud platform.

B. Implementation on AWS Lambda

We have implemented SIREN with 4K+ lines of Python
code, supporting ML model training on top of AWS Lambda,
and with full support of MXNet APIs. Machine learning
practitioners can run their legacy MXNet projects on SIREN
without refactoring their existing code. Our real-world im-
plementation consists of three parts in Fig. 2: (1) the code
package encapsulating MXNet machine learning libraries; (2)
the local client built with AWS SDK boto3, which invokes
and manages stateless functions in AWS Lambda; and (3) a
DRL agent implemented with TensorFlow to make dynamic
resource configuration decisions, which we shall describe in
Sec. IV in detail. A series of constraints are enforced by AWS
Lambda to keep stateless functions lightweight and portable.
Our implementation of SIREN is designed to overcome these
constraints.

Since the programming runtime of AWS Lambda does not
support ML training algorithms natively, we have introduced a
part of MXNet ML libraries into the code package. On AWS
Lambda, the maximum size of the code package is limited to
250 MB, which makes it infeasible to directly load any off-
the-shelf ML libraries (e.g., MXNet, TensorFlow) onto AWS
Lambda. To shrink the size of the MXNet code package, we
recompiled the MXNet source code with different combina-
tions of compilation options, and excluded the unnecessary
compilation options for the serverless cloud. For example, we
disabled the options USE_CUDA, USE_CUDNN and USE_OPENMP,
since here we focus on achieving parallelism through a large
number of Lambda functions instead of through multiple cores.

The computing capacity of a single function is also re-
stricted on AWS Lambda: each Lambda function is allowed
a maximum of 300 seconds1 to finish execution, and the
maximum memory size is 3 GB. However, since AWS Lambda
supports as many as 3,000 functions executing concurrently in
each AWS account, SIREN uses a high level of parallelism by
parallelizing the ML training workload using a large number
of Lambda functions.

1AWS Lambda now has extended the maximum function timeout to 900
seconds.

IV. DEEP REINFORCEMENT LEARNING
FOR DYNAMIC RESOURCE PROVISIONING

In this section, we present our deep reinforcement learning
(DRL) technique for dynamic resource provisioning in SIREN.
Reinforcement learning (RL) [12] is an experience-driven
approach where an agent learns how to behave in a dynamic
environment by interacting with it and receiving rewards
for performing actions. Deep reinforcement learning further
leverages deep neural networks to solve reinforcement learning
problems. The agent observes various noisy signals from a
dynamic environment, which are called states, and feeds these
states to a deep neural network (DNN), which generates an
action. The agent will take the action in the environment and
receive a reward, which is in turn used to update the parameters
in the DNN to make better decisions. DRL works in a closed
loop to improve decision making with the goal of maximizing
a total reward, which we will describe in detail.

The key difference between RL and supervised learning
is that in RL, the current action of an agent will affect the
state of the environment it will see next, and thus affecting
the decision on the next action it should take. In contrast,
in supervised learning, the current decision, either in a batch
setting or in an online setting, does not affect what the agent
sees in the future. Due to this unique characteristic, DRL
has recently achieved enormous success in many areas that
require sequential decision making and interaction with the
environment, e.g., in games such as AlphaZero, and in the
placement of computational workloads in TensorFlow on a
mixture of heterogeneous devices [13]. DRL naturally fits the
resource allocation problem in SIREN— the resource allocated
in one epoch will fundamentally change the job progress, cost
incurred and many other factors to be described. These factors
will in turn affect the resource provisioning decisions for future
epochs.

A. Problem Formulation

We consider a ML training workload on a dataset of M
samples, with a monetary budget B. The training is terminated
if a certain loss value L is reached or the budget is used. At any
epoch t, the scheduler will make decisions about the number
of functions, denote by nt, to be invoked in parallel as well
as the memory size mt of each function.

Let ft,i, i = 1, . . . , nt, represent the ith (alive) function
launched for epoch t, as shown in Fig. 3. Note that if function i
has reached its lifetime, e.g., in AWS Lambda, a new function
will be invoked to replace it and is still denoted by ft,i so
that there will always be nt functions concurrently being
executed in epoch t. Each function ft,i repeatedly computes an
aggregated gradient for a new mini-batch of data and updates
the model parameters according to the SGD in the HSP mode
(Eqn. (2)).

In epoch t, suppose the function ft,i spends a total time pe-
riod of PFt,i in fetching mini-batches of data, PCt,i in computing
gradients and PUt,i in updating model parameters. The total ex-
ecution time of function i in epoch t is Pt,i = PFt,i+P

C
t,i+P

U
t,i.

Thus, the total duration of epoch t is given by Pt = maxi Pt,i

Symbol Meaning

c the price of function execution for every GB-second
M the input data size of the training workload
B The monetary budget for the training workload
L The convergence threshold of of the training loss
t the epoch index of the training workload
T the index of the final training epoch, t ∈ [1, T]

nt the number of concurrent functions in epoch t

mt the memory size of each function in epoch t

ft,i the function i in the t-th epoch, i ∈ [1, nt]

PF
t,i the time period for function ft,i fetching input data

PC
t,i the time period for function ft,i computing gradients

PU
t,i the time period for function ft,i updating parameters

Pt the whole time period of the epoch t

`t the loss value achieved at the end of the epoch t

bt the remaining budget at epoch t

rt the rewards obtained at the end of the epoch t

ut the average memory utilization observed in epoch t

wt the average CPU utilization observed in epoch t

TABLE II: Notations used in the paper.

in HSP. At the end of epoch t, the loss value of the ML job
is updated to `t.

Serverless cloud charges its users based on the function
execution time and function memory sizes. Let c represent
the unit price of executing a function with 1 GB of mem-
ory for one second. Thus, the cost incurred in epoch t is∑nt

i=1 cmtPt,i. And the total monetary cost of the ML job
is given by

∑T
t=1

∑nt

i=1 cmtPt,i, where T is the total number
of epochs it takes for the loss value of the ML job to reach a
threshold L.

The objective is to minimize the job completion time∑T
t Pt, subject to a certain budget B on the monetary cost,

which is to solve the following optimization problem:

min
{nt},{mt}

T∑
t=1

Pt

T > 1, `T 6 L
T∑
t=1

nt∑
i=1

cmtPt,i 6 B

(3)

This problem is a challenging sequential decision problem,
which can hardly be solved by existing dynamic programming
algorithms, due to the absence of a deterministic mapping
from the current status and actions, e.g., `t, nt, and mt, to the
completion time Pt of epoch t. We propose to solve Eqn. (3)
using deep reinforcement learning, where a DRL agent can
learn to apply optimized strategies under different states of
the ML job from its experience of executing similar jobs.

B. The DRL Agent

At the beginning of each epoch t, the DRL agent in SIREN
decides the resource provisioning scheme (nt,mt), which are
called actions for epoch t, based on the current states of

EnvironmentAgent

Stateless

Functions

Policy parameters

F
e
a
tu

re
s

θ

Action at

Reward rt

State st−1

Policy

π(at|st−1, θ)

Fig. 4: DRL with policy represented by a DNN.

the environment, as shown in Fig. 4. The effectiveness of
the chosen action (nt,mt) is then quantified by a numerical
reward observed by the end of epoch t, depending on the
duration Pt of this epoch as well as whether the budget is
overrun or the job is completed. We define the states, actions,
and the reward in our DRL agent in detail in the following.

State: Let the state of epoch t be represented by a vector
st = (t, `t, Pt, P

F
t , P

C
t , P

U
t , ut, wt, bt), in which `t is the

achieved loss value at the end of epoch t. Here t and `t help
the DRL agent learn how the loss values of the ML job evolve.
PFt , PCt , PUt are the average data fetching time, average
computing time and average model parameter updating time,
respectively, while Pt is the epoch completion time. These
time measurements reflect the training speed of SIREN under
the previous resource provisioning decision. Furthermore, ut
and wt are the average memory utilization and average CPU
utilization in the serverless cloud in epoch t, while bt is the
remaining budget at the end of epoch t. These utilization
metrics help to indicate whether the resource provisioned in
epoch t was excessive or insufficient.

Action: An action at = (nt,mt) will be chosen at the
beginning of epoch t, where nt,mt ∈ Z+. Recall that nt is
the number of functions to be invoked and mt is the memory
size of each function. The DRL agent chooses actions based
on a policy, which is by definition a probability distribution
π(a|s) over the entire action space given the current state.
We will apply the policy gradient methods to approximate the
policy π(a|s) by a function with parameters θ. Thus, the policy
π can be written as π(a|s, θ), where θ are the parameters to
be learned.

Note that our action space is a discrete space including as
many as nt×mt possible choices. For example, AWS Lambda
supports up to 3,000 concurrent functions and 46 levels of
memory sizes ranging from 128 MB to 3,008 MB2. Therefore,
there are 138,000 possible actions in AWS Lambda. Training
a DRL agent with such a large action space would be costly.
To make the reinforcement learning efficient, we define the
policy π as a Gaussian probability density over a real-valued
space, i.e.,

π(a|s, θ) =
1

σ(s, θ)
√

2π
exp

(
− (a− µ(s, θ)2

2σ(s, θ)2

)
, (4)

2https://docs.aws.amazon.com/lambda/latest/dg/limits.html

and choose an action at based on the conditional probability
π(at|st−1, θ). Then, learning the probability mass function
over a large discrete action space is converted to finding the
parameters (µ(s, θ), σ(s, θ)) in a 2-D continuous space.

Reward: We set the reward observed at the end of each
epoch t as rt = −βPt, t = 1, . . . , T − 1, where β is a
coefficient that regularizes the reward. The longer the epoch
t takes, the less reward the agent will receive. Recall that T
is the epoch after which the ML job stops. In other words, at
epoch T , either we have `T 6 L or the budget B is used up
(bT 6 0). The reward in the final epoch T is defined as

rT =

{
−βPT + C if `T 6 L and bT > 0,

−βPT − C otherwise.

In other words, if the job stops with success, i.e., the conver-
gence threshold L is met without overrunning the budget B,
a positive C will be awarded to the agent. Otherwise, if the
job fails, i.e., it has not converged before using up the budget,
a negative C will be added to the reward.

Finally, in DRL, the agent should learn to maximize the
expectation of the cumulative discounted reward, defined as∑T
t=1 γ

trt [12], where γ ∈ (0, 1] is a factor discounting future
rewards. During DRL training, this objective will guide the
agent to find good approximate solutions to (3).

C. Training the DRL Agent

We briefly describe the techniques we use to train the DRL
agent. We refer readers to [12] for a detailed survey and
rigorous derivations for DRL training algorithms. The DRL
training process is based on the iterative interaction between
the agent and the environment, as shown in Fig. 4. The
goal of DRL training is to maximize the expected cumulative
discounted reward.

There are two phases to train a DRL agent: forward propa-
gation and backward propagation. In the forward propagation,
the agent observes some state st from the environment at
epoch t. A policy DNN takes the state st−1 as the input
and outputs an action at for epoch t. After the action at
is taken in the environment, a reward rt is generated and
observed, and the interaction moves to the next epoch t + 1.
The backward propagation phase starts after the forward
propagation is processed for all T epochs, i.e., when the ML
training job has stopped. This phase focuses on maximizing
the expected cumulative discounted reward through a gradient
descent algorithm applied to the policy parameters θ. The
gradient of this objective with respect to θ is given by

∇θEπ
[

T∑
t=1

γtrt

]
= Eπ[∇θ lnπ(a|s, θ)qπ(s,a)], (5)

where qπ(s,a) is the expected cumulative discounted reward
from choosing action a in state s and subsequently following
policy π [12]. Then the policy parameters θ can be updated
using gradient descent with backward propagation.

GS
Siren10.03%

12.87%

36%

T
im

e
 (

s
)

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Budget ($)
100 200 300

(a) Comparison on ML training time.

GS-300

GS-200

GS-100

GS-50

T
o

ta
l
re

w
a

rd
s

−
1

0
0

0
1

0
0

Number of functions

0 1000 2000

(b) Rewards by the grid search (GS).

Siren-300

Siren-200

Siren-100

N
u

m
b

e
r

o
f
fu

n
c
ti
o

n
s

0
5

0
0

1
0

0
0

Epoch of ML training

0 100 200 300

(c) Resource schemes by SIREN.

Siren-300

T
o

ta
l
re

w
a

rd
s

−
2

0
0

−
1

0
0

0
1

0
0

Iteration

0 100 200 300

(d) The learning curve of SIREN.

Fig. 5: A comparison between SIREN and the grid search
for the best number of functions.

V. EVALUATION

We conduct extensive performance evaluation of SIREN
through both simulation and real experiments done on the
cloud platforms including AWS Lambda and EC2. We show
that in our experiments, SIREN deployed on AWS Lambda
can reduce job completion time by up to 44.3% as compared
to running it in a parameter server architecture (MXNet) on
EC2 clusters, at the same cost for the same quality of models.
Before presenting the evaluation results, we briefly describe
our methodology and settings as follows.

Simulation: We simulated a serverless cloud environment
running mini-batched SGD algorithms controlled by the DRL
agent. We implemented the simulation environment with the
OpenAI Gym3, which is an open source interface for eval-
uating reinforcement learning algorithms. The purpose of
simulation is to verify the advantage by using SIREN for
scheduling as compared to the optimal (static) policy found
through a thorough grid search.

Testbed: We compare the completion time and cost of train-
ing ML jobs with SIREN on AWS Lambda and with MXNet
on EC2 clusters. We select three types of EC2 instances to
build the testbed clusters: m4.large (2 vCPU, 8GB memory),
m4.xlarge (4 vCPU, 16GB memory) and m4.2xlarge (8
vCPU, 32GB memory), which charges $0.1, $0.2 and $0.4
per hour, respectively.

Workload: Our experimental evaluation is done for several
popular machine learning models, including: 1) LeNet [14] on
the MNIST dataset4; 2) sentiment-analysis of a movie review
dataset5 via convolutional neural network (CNN); and 3) linear

3https://gym.openai.com
4http://yann.lecun.com/exdb/mnist/
5https://www.cs.cornell.edu/people/pabo/movie-review-data/

Function # Cost ($) Time (s)

Grid Search 828 299.89 2452.3
SIREN 652 – 892 299.92 1569.5

Grid Search 482 199.67 2816.9
SIREN 355 – 597 199.73 2454.4

Grid Search 138 99.99 4979.7
SIREN 56 – 258 99.82 4480.4

Grid Search 3000 47.76 Fail
SIREN 1293 – 2995 49.82 Fail

TABLE III: A comparison between SIREN and the grid
search for the best number of functions under different
budgets.

classification using sparse matrix multiplication on the Avazu
click-through prediction dataset6.

Performance metrics: We measure the training completion
time and calculate the total cost when the training job com-
pletes (converges). It should be noted that on EC2, it takes
around 10 minutes to prepare all bare Linux instances to use
MXNet for ML jobs, although we automate the deployment
of EC2 clusters with ansible. However, we will exclude
such instance preparation time for EC2 in our time and cost
evaluation, though users still have to pay for it in reality. We
also ignore the monthly AWS Lambda free quotas.

A. Simulation

We simulate a serverless cloud running a mini-batched SGD
algorithm with SIREN. For each training epoch, we input the
number of functions to the simulated serverless cloud, and in
return we receive a reward as well as the states, including loss
value `t and time metrics Pt, PFt , PCt and PUt . We obtain `t
and PUt by simulating stateless functions with Python threads
on a local server. Each thread calculates a gradient and updates
the model in a local redis key-value database as Eqn. 2.
PFt and PUt are simulated by adding a time delay to the I/O
operations of threads as the network transmission time.

Upon the simulated serverless cloud, we compare SIREN
with a baseline that performs a grid search over all possible
numbers of functions. It searches for a particular number of
functions that minimizes the training time. The baseline is
cheating since it is infeasible to perform such an exhaustive
search in reality.

Fig. 5(a) compares the training time achieved by the grid
search and SIREN. Compare to the grid search, SIREN reduces
the training time by at most 36%, given a budget of $300.
The grid search enumerates the total rewards by different
numbers of functions under different budgets as in Fig. 5(b).
For example, under a budget of $300, training with 828
functions takes the least time: 2,452.3 seconds (Table III).
SIREN dynamically launches 652 to 892 functions and finishes
the training within 1,569.5 seconds. Both grid search and
SIREN fail to finish the training with a budget of $50. As
there is no way to finish the training job with $50, SIREN

6https://www.kaggle.com/c/avazu-ctr-prediction/data

m4.large

m4.xlarge

m4.2xlarge

Siren

C
o

s
t(

$
)

0.02

0.04

0.06

0.08

T
im

e
 (

s
)

50

100

150

200

250

Number of EC2 instances
2 4 6 8

Siren

(a) Completion time and cost of EC2 and SIREN under different settings.

of functions

Memory

#
 o

f
fu

n
c
ti
o

n
s

500

1000

M
e

m
o

ry
 (

M
B

)

200
400
600
800

Training epoch of LeNet

2 4 6 8

(b) Resource schemes by SIREN.

T
o

ta
l
re

w
a

rd
s

−100

0

100

Iteration

0 100 200 300

(c) The learning curve of SIREN.

Fig. 6: Training LeNet on the MNIST dataset by SIREN
and by MXNet on EC2.

aggressively launches many more functions than the functions
launched when given a budget of $200 and $300.

SIREN dynamically adjusts the number of functions based
on its experience. Fig. 5(c) presents the number of functions
assigned to each epoch. In the first several epochs, SIREN
launches a large number of functions to rapidly reduce the loss
value; in the later epochs, the agent decreases the number of
functions to save money. The DRL agent of SIREN is trained
online by iteratively interacting with the simulated serverless
cloud. The learning curve in Fig. 5(d) shows that the agent
learns to maximize the total reward by exploring different
numbers of functions. The training of the agent is completed
after around 200 iterations.

EC2
Siren

T
im

e
 (

s
)

0

100

200

300

400

Cost ($)
0.02 0.04 0.06 0.08

Fig. 7: Training completion time and cost of EC2 clusters
and SIREN.

0

50

100

LeNet
0

1000

2000

CNN
0

1000

2000

3000

Linear Classfication

m4.2xlarge Siren

T
im

e
 (

s
)

Fig. 8: A comparison between SIREN and EC2 under the
same cost budget for different models.

B. Testbed and Experimental Results

It is infeasible to find the optimal cluster to compare with
SIREN, due to the complexity of EC2 configurations. To
broaden the coverage of potential optimal cluster settings, we
setup twelve EC2 clusters of the three types of EC2 instances
with four scales: 2, 4, 6 and 8 instances. For example, the
m4.large×2 cluster is a cluster of two m4.2xlarge instances.

Fig. 6(a) plots the completion time and the corresponding
cost of training LeNet with the twelve EC2 clusters and with
SIREN. Fig. 6(a) reveals that the expense on EC2 is non-linear
to the training completion time due to the heterogeneity of
EC2 clusters. For example, both the m4.xlarge×6 cluster and
the m4.2xlarge×6 cluster finish the training almost at the
same time, but the latter incurred a cost twice as high as the
former. In contrast, SIREN achieves shorter completion times
with more investment. As in Fig.7, SIREN is faster than EC2
clusters at the same cost. Compared to the EC2 clusters, SIREN
reduces training times by 16.2%, 26.7% and 28% at a cost of
around $0.03, $0.04 and $0.05.

Fig. 6(b) presents that SIREN dynamically adjusts functions
and their memory for each training epoch. When the number
of functions decreases, each function receives larger training
data partitions and needs larger memory to process the data
partitions. The DRL agent in SIREN is trained by online
interactions with AWS Lambda. The learning curve in Fig. 6(c)
shows that the training of the DRL agent is completed after
around 150 iterations.

We further train LeNet, the CNN model and the linear clas-
sification model on a cluster of eight m4.2xlarge instances,

and we collect the cost. We then train the same models with
SIREN at the same cost of the m4.2xlarge×8 cluster. Fig. 8
shows that SIREN reduces the training time by 40%, 39.4%
and 44.3% with these models respectively, compared to the
EC2 cluster at the same cost.

VI. RELATED WORK

To train ML models with massive datasets, a few ML
training frameworks have been developed, such as TensorFlow
and MXNet. These frameworks are mostly developed based
on the architectures of parameter servers [15] or the Message
Passing Interface (MPI), which heavily rely upon a dedicated
cluster of physical servers or virtualized instances. However, it
is non-trivial to choose the optimal configuration for a cluster
to run distributed ML training jobs. Recently, a number of
studies attempted to explore an optimal cluster configuration
for distributed computing workloads (e.g., [1]).

Meanwhile, serverless computing has emerged as a new
cloud computing paradigm, where various applications have
been built, including parallel data processing [2] and low-
latency video processing [16]. [11] showed that running
applications on the serverless cloud is more cost efficient
than monolithic services such as AWS EC2. PyWren [2]
performed ML training jobs as MapReduce tasks on the
serverless cloud, where training is performed synchronously
and developers have to refactor their existing models with
PyWren’s MapReduce-like APIs.

In contrast, as a new asynchronous distributed machine
learning framework based on the serverless cloud, SIREN ap-
plies reinforcement learning techniques to achieve a balanced
tradeoff between model quality and cost in order to minimize
possible training times. With full support of MXNet APIs,
SIREN is compatible with existing MXNet models.

SLAQ [4] is a quality-driven scheduler designed for multiple
ML training jobs. It aims at maximizing the quality of models
by adaptively allocating resources to different ML training
jobs. In contrast, with SIREN, we focused on speeding up
a single ML training job by making sequential resources
provisioning decisions, and designed an experience-driven
DRL scheduler that learns the best way to provision resources
with deep reinforcement learning techniques. DRL has been
used for a wide variety of learning tasks ranging from robotics
to game playing and device placement [13]. With SIREN, we
designed a DRL agent that schedules the number of functions
and their memory for ML training jobs on the serverless cloud.

VII. CONCLUDING REMARKS

In this paper, we presented our design and implementa-
tion of SIREN, an asynchronous distributed machine learning
framework based on the emerging serverless architecture.
We argue that it is time-consuming and error-prone for ML
practitioners and data scientists to maintain a physical or vir-
tualized computing platform. SIREN eliminates the complexity
of building and managing virtual machine infrastructures. We
designed a DRL-based scheduler that learns the best way to
achieve a balanced tradeoff between model quality and cost.

We also proposed a new HSP computing mode that is efficient
in serverless architectures. We have implemented a prototype
of SIREN based on AWS Lambda and evaluated it with a
variety of ML models. An extensive comparison with ML
training jobs on AWS EC2 clusters has shown that ML training
with SIREN on AWS Lambda has reduced the job completion
time by up to 44.3% for the same quality of models at the
same cost.

VIII. ACKNOWLEDGMENTS

This work is supported by a research contract with Huawei
Corp. and an NSERC Collaborative Research and Develop-
ment (CRD) grant.

REFERENCES

[1] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Config-
urations for Big Data Analytics.” in Proc. the 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[2] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
Cloud: Distributed Computing for the 99%,” in Proc. 2017 Symposium
on Cloud Computing (SoCC), 2017.

[3] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation
with OpenLambda,” Elastic, vol. 60, p. 80, 2016.

[4] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: Quality-
Driven Scheduling for Distributed Machine Learning,” in Proc. the 2017
Symposium on Cloud Computing (SoCC). ACM, 2017.

[5] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Op-
timization of Machine Learning Algorithms,” in Advances in Neural
Information Processing Systems (NIPS), 2012.

[6] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel Co-
ordinate Descent for L1-Regularized Loss Minimization,” in Proc. Int’l
Conference on Machine Learning (ICML), 2011.

[7] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in Proc. USENIX Symposium on
Operating System Design and Implementation (OSDI), 2014.

[8] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
Adam: Building an Efficient and Scalable Deep Learning Training
System,” in Proc. USENIX Symposium on Operating System Design and
Implementation (OSDI), 2014.

[9] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More Effective Distributed ML
via A Stale Synchronous Parallel Parameter Server,” in Advances in
neural information processing systems (NIPS), 2013.

[10] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous Parallel Stochastic
Gradient for Nonconvex Optimization,” in Advances in Neural Informa-
tion Processing Systems, 2015, pp. 2737–2745.

[11] M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Ver-
ano, R. Casallas, S. Gil, C. Valencia, A. Zambrano et al., “Infrastructure
Cost Comparison of Running Web Applications in the Cloud Using AWS
Lambda and Monolithic and Microservice Architectures,” in Proc. the
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2016.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[13] A. Mirhoseini, H. Pham, Q. Le, M. Norouzi, S. Bengio, B. Steiner,
Y. Zhou, N. Kumar, R. Larsen, and J. Dean, “Device Placement Opti-
mization with Reinforcement Learning,” in International Conference on
Machine Learning (ICML), 2017.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. the IEEE, 1998.

[15] A. Smola and S. Narayanamurthy, “An Architecture for Parallel Topic
Models,” Proc. the VLDB Endowment, 2010.

[16] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads,” in Proc. the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

