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Query Processing
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1.CREATE VIEW MoviesOf1996 AS   
2.    SELECT *                     
3.    FROM Movies   
4.    WHERE year = 1996;           
5.   
6.SELECT starName, studioName      
7.FROM MoviesOf1996 JOIN StarsIN;  

π startName,studioName

σ year=1996

Movies

StarsIn

⋈

Query Plan



Decentralized Global Analytics
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Fluctuating WAN
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A Toy Example

01. SELECT  
02.   C.name, O.orderstatus,  
03.   L.discount, PS.availqty  
04. FROM  
05.   customer as C,  
06.   order as O,  
07.   lineitem as L,  
08.   partsupp as PS
09. WHERE O.orderkey == L.orderkey,
10.   AND PS.partkey == L.partkey, 
11.   AND PS.suppkey == L.suppkey,
12.   AND C.custkey  == O.custkey  
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Query Plan Candidates
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• The worst plan
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• The initial optimal plan
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Query Completion Time
Centralized plan
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Dynamic Query Planning

• Accurately estimating runtime cost 
of query plans.


• Minimize overall completion time of 
queries.

 Challenges: 
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filter(order o=>(o.price>100)) 

Data Generation

1.Operator —> Map stage


          


2. Operator —> MapReduce stages


σ price>100

customer orders⋈

map(customer c=>(c.custkey, c.values))

map(order o=>(o.custkey, o.values)) 

reduce(custkey, values)  
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Table 1: The raw features.

Raw Features Range

total_exec_num 1 � 16
cpu_core_num 1 � 8 per executor
mem_size 1 � 4 GB per executor
avail_bw 5 � 1000Mbps per link
tbl1_size, tbl2_size 0.3 � 12 GB per table
hdfs_block_num 1 � 90

4 BUILDING COST MODELS
In this section, we describe our machine learning models based on
LASSO, Gradient Boosting Regression Tree (GBRT) and extensive
feature crafting for predicting the time cost and output cardinality
of each pairwise join between a pair of tables, which will serve as
a basis for our dynamic QEP adjustment schemes. We created a
dataset of 15K samples by running the realistic TPC-H benchmark
queries and collecting the corresponding statistics, which we call
features.

Our basic idea is to consider all raw features relevant to the
running time and output size as well as all intuitively possible
nonlinear interactions across these raw features, and then rely on
LASSO, a powerful dimension reduction tool, to pick out only the
key (derived) features. These selected features are further input to
GBRT to characterize their nonlinear contribution toward the target
to be predicted. We show that the proposed models can achieve a
prediction accuracy of over 95% on this dataset.

4.1 Dataset Creation
We built a new dataset of 15K samples, each recording the time it
took to run a (possibly complex) query from TPC-H benchmark [13]
and its output size, as well as a number of features related to the
query execution. Each query in the dataset takes two tables gen-
erated by TPC-H dbgen [13] as the two input tables, each located
on a di�erent datacenter. Since the shu�ing during reduce stages
forms a major bottleneck in geo-distributed analytics, we focus on
JOIN-like operators between the pair of tables such as Cartesian
product, natural join and theta-join, which lead to heavy network
shu�e tra�c.

We ran di�erent types of pairwise joins under varied combi-
nations of input features. These features are related to the query
itself, the input tables involved, and the running environment, the
latter including hardware con�guration, network bandwidth and
parameter settings in the underlying Spark system. These features
are summarized in Table 1. The feature, total_executor_num, rep-
resents the number of executors involved in the execution of the
join and dictates the maximum number of tasks executed simulta-
neously. The features, cpu_core_num and mem_size, are the upper
bounds of computing resources that each worker can utilize. The
feature, avail_bw, indicates the available bandwidth between the
two sites storing the two tables. During dataset creation, the vary-
ing bandwidth was obtained via tc rule based bandwidth regulation.
tbl1_size, tbl2_size are the actual sizes of the generated tables,
ranging from 300 MB to 12 GB, as we focus on large tables and
data-intensive jobs. Finally, hdfs_block_num indicates both the

Table 2: The handcrafted features.

Handcrafted Features

tbl_size_sum = sum(tbl1_size, tbl2_size)
max_tbl_size = max(tbl1_size, tbl2_size)
min_tbl_size = min(tbl1_size, tbl2_size)
1/avail_bw, 1/total_exec_num, 1/cpu_core_num

input data size and the number of parallel tasks, i.e., the parallelism
of data processing.

Once a model is trained o�ine based on the created dataset, we
can estimate the cost of executing any pairwise joins online, based
on instantaneous measurements of these features in the runtime
system. All the features selected can be easily measured or acquired
online during query execution in a non-intrusive manner without
interfering with query execution. In particular, in Sec. 5, we will
introduce our lightweight and non-intrusive scheme for online
bandwidth probing. Besides, it is also easy to incrementally expand
the training dataset by including statistics from recently executed
queries. And the models can easily be retrained periodically.

4.2 Crafting the Nonlinear Feature Space
Since the query completion time and output cardinality may de-
pend on input features in a nonlinear way, we further leverage
the intuitions about geo-distributed analytics to craft some derived
features based on the interaction of raw features. Our additional
handcrafted nonlinear features are also shown in Table 2. Further-
more, we apply feature crossing to both raw features and hand-
crafted features to obtain polynomial features, which signi�cantly
expand the dimension of the feature space. For example, the degree-
2 polynomial features of a 3-dimensional feature space [a,b, c] are
1,a,b, c,a2,ab,ac,b2,bc, c2.

The rationale of using handcrafted features and feature cross-
ing is to incorporate important nonlinear terms that may possi-
bly help decide the completion time. For example, in a broadcast
join, min(tbl1_size, tbl2_size)/avail_bw may decide the shuf-
�e time, since the smaller table will be sent to the site of the larger
table for join execution. Similar ideas of using such intuitive pre-
dictors have been adopted in Ernest [33], which performs a linear
regression of non-linear interactions between system parameters to
predict the time to execute a data analytics job in a cluster. Similarly,
the optimization-based methods in Clarinet [34] and Iridium [29]
have also assumed that the data transmission time depends on
the table sizes divided by the available bandwidth in a linear way.
However, it is worth noting that the available bandwidth is only
loosely related to data transmission time, since it only de�nes an
upper bound of available bandwidth, which the distributed com-
puting engine can hardly fully saturate due to a number of reasons
mentioned in Sec. 1.

Our statistical feature engineering and selection approach is a
generalization of the above ideas—we �rst expand the feature space
to as large as possible to incorporate all intuitively possible nonlin-
ear interactions between relevant parameters, and then rely on the
ability of LASSO to select only the relevant ones in a statistical way.



Data Preprocessing

1. Handcrafting features


2. Polynomial feature crossing


3. Feature selection by 
LASSO path

[a,b,c] [1,a,b,c,a2 ,ab,ac,b2 ,bc,c2]
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Table 1: The raw features.

Raw Features Range

total_exec_num 1 � 16
cpu_core_num 1 � 8 per executor
mem_size 1 � 4 GB per executor
avail_bw 5 � 1000Mbps per link
tbl1_size, tbl2_size 0.3 � 12 GB per table
hdfs_block_num 1 � 90

4 BUILDING COST MODELS
In this section, we describe our machine learning models based on
LASSO, Gradient Boosting Regression Tree (GBRT) and extensive
feature crafting for predicting the time cost and output cardinality
of each pairwise join between a pair of tables, which will serve as
a basis for our dynamic QEP adjustment schemes. We created a
dataset of 15K samples by running the realistic TPC-H benchmark
queries and collecting the corresponding statistics, which we call
features.

Our basic idea is to consider all raw features relevant to the
running time and output size as well as all intuitively possible
nonlinear interactions across these raw features, and then rely on
LASSO, a powerful dimension reduction tool, to pick out only the
key (derived) features. These selected features are further input to
GBRT to characterize their nonlinear contribution toward the target
to be predicted. We show that the proposed models can achieve a
prediction accuracy of over 95% on this dataset.

4.1 Dataset Creation
We built a new dataset of 15K samples, each recording the time it
took to run a (possibly complex) query from TPC-H benchmark [13]
and its output size, as well as a number of features related to the
query execution. Each query in the dataset takes two tables gen-
erated by TPC-H dbgen [13] as the two input tables, each located
on a di�erent datacenter. Since the shu�ing during reduce stages
forms a major bottleneck in geo-distributed analytics, we focus on
JOIN-like operators between the pair of tables such as Cartesian
product, natural join and theta-join, which lead to heavy network
shu�e tra�c.

We ran di�erent types of pairwise joins under varied combi-
nations of input features. These features are related to the query
itself, the input tables involved, and the running environment, the
latter including hardware con�guration, network bandwidth and
parameter settings in the underlying Spark system. These features
are summarized in Table 1. The feature, total_executor_num, rep-
resents the number of executors involved in the execution of the
join and dictates the maximum number of tasks executed simulta-
neously. The features, cpu_core_num and mem_size, are the upper
bounds of computing resources that each worker can utilize. The
feature, avail_bw, indicates the available bandwidth between the
two sites storing the two tables. During dataset creation, the vary-
ing bandwidth was obtained via tc rule based bandwidth regulation.
tbl1_size, tbl2_size are the actual sizes of the generated tables,
ranging from 300 MB to 12 GB, as we focus on large tables and
data-intensive jobs. Finally, hdfs_block_num indicates both the

Table 2: The handcrafted features.

Handcrafted Features

tbl_size_sum = sum(tbl1_size, tbl2_size)
max_tbl_size = max(tbl1_size, tbl2_size)
min_tbl_size = min(tbl1_size, tbl2_size)
1/avail_bw, 1/total_exec_num, 1/cpu_core_num

input data size and the number of parallel tasks, i.e., the parallelism
of data processing.

Once a model is trained o�ine based on the created dataset, we
can estimate the cost of executing any pairwise joins online, based
on instantaneous measurements of these features in the runtime
system. All the features selected can be easily measured or acquired
online during query execution in a non-intrusive manner without
interfering with query execution. In particular, in Sec. 5, we will
introduce our lightweight and non-intrusive scheme for online
bandwidth probing. Besides, it is also easy to incrementally expand
the training dataset by including statistics from recently executed
queries. And the models can easily be retrained periodically.

4.2 Crafting the Nonlinear Feature Space
Since the query completion time and output cardinality may de-
pend on input features in a nonlinear way, we further leverage
the intuitions about geo-distributed analytics to craft some derived
features based on the interaction of raw features. Our additional
handcrafted nonlinear features are also shown in Table 2. Further-
more, we apply feature crossing to both raw features and hand-
crafted features to obtain polynomial features, which signi�cantly
expand the dimension of the feature space. For example, the degree-
2 polynomial features of a 3-dimensional feature space [a,b, c] are
1,a,b, c,a2,ab,ac,b2,bc, c2.

The rationale of using handcrafted features and feature cross-
ing is to incorporate important nonlinear terms that may possi-
bly help decide the completion time. For example, in a broadcast
join, min(tbl1_size, tbl2_size)/avail_bw may decide the shuf-
�e time, since the smaller table will be sent to the site of the larger
table for join execution. Similar ideas of using such intuitive pre-
dictors have been adopted in Ernest [33], which performs a linear
regression of non-linear interactions between system parameters to
predict the time to execute a data analytics job in a cluster. Similarly,
the optimization-based methods in Clarinet [34] and Iridium [29]
have also assumed that the data transmission time depends on
the table sizes divided by the available bandwidth in a linear way.
However, it is worth noting that the available bandwidth is only
loosely related to data transmission time, since it only de�nes an
upper bound of available bandwidth, which the distributed com-
puting engine can hardly fully saturate due to a number of reasons
mentioned in Sec. 1.

Our statistical feature engineering and selection approach is a
generalization of the above ideas—we �rst expand the feature space
to as large as possible to incorporate all intuitively possible nonlin-
ear interactions between relevant parameters, and then rely on the
ability of LASSO to select only the relevant ones in a statistical way.
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Training
LASSO Regression

GBRT

Linear Regression with L1 penalty

Gradient Boosting Regression Tree 
    500 ternary regression trees of depth 3
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Model Test 
APEi =

| yi − h(xi ) |
yi

×100%.Absolute 
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Dynamic Planning Strategies

• Shortest Completion Time First (SCTF)  
duration

• Maximum Data Reduction First (MDRF)  
data_reduction

• Maximum Data Reduction Rate First (MDRRF)  
data_reduction / duration
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Evaluation Setup

Table Location Table Location

lineitem Taiwan customer Frankfurt
region Singapore orders Sao Paulo
supplier Sydney nation Northern Virginia
part Belgium partsupp Oregon

Table 4: Benchmark data locations.

We use the dataset from the TPC-H benchmark [8],
which contains eight relational tables. The tables are
stored as structured data in Hive with the HDFS as the
storage backend. The data distribution is as Table 4.

Our experiments show Turbo can effectively adjust
QEPs in corresponding to fluctuating WAN conditions
and reduces the query completion times from 12.6% to
41.4%.

6.1 Experiments
We run a suite of benchmark queries under the following
five schemes to evaluate Turbo. The first two schemes are
used for comparison. The other three schemes are Turbo
configured with the three greedy policies respectively.
• Baseline: the default query optimizer of Spark SQL

which is agnostic to the fluctuating bandwidths.
• Clarinet: the optimal query plan is determined by the

bandwidths and data distribution when the query is
submitted. This is an approximation1 to Clarinet [25].

• Turbo-SCTF: when choosing the next join to run, the
shortest completion time first (SCFT) policy greedily
chooses the join that consumes the least time.

• Turbo-MDRF: when choosing the next join to run,
the maximum data reduction first (MDRF) policy
greedily chooses the join that reduces the most vol-
ume of data.

• Turbo-MDRRF: when choosing the next join to run,
the maximum data reduction rate first (MDRRF) pol-
icy greedily chooses the join that reduces the most
volume of data within unit time. This policy jointly
considers both join completion times and output size.
We run the query Q21 from the TPC-H benchmark un-

der the five schemes to show how Turbo adapts a QEP to
the fluctuating WAN. The query Q21 processes four ta-
bles, lineitem, orders, nation and supplier. We
launch six clusters of the same hardware configuration
as mentioned. Each cluster is composed of four instances
from four regions respectively, i.e., Brazil, Taiwan, Syd-
ney and Virginia. Five of the clusters run query Q21 si-
multaneously in terms of the five schemes. The remain-

1It should be noted that we do not perform bandwidth reservation
and task placement. The original Clarinet should have better perfor-
mance with the capability of bandwidth reservation as well as task
placement and scheduling.
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Figure 10: The Gantt chart of the query Q21.

ing one cluster runs iperf to periodically measure band-
widths between the four regions, which avoids contend-
ing bandwidths with the five clusters running Q21.

In Fig. 10, we plot a Gantt chart to show the progress
of the query Q21 running under the five schemes, dealing
with WAN fluctuations. Two colours are used to distin-
guish different stages of the running query. We also plot
the bandwidths between each two of the four regions ac-
cording to the timeline of the query execution. The fluc-
tuating links are marked in black. As we can see from
the Gantt chart, Turbo-MDRF and Turbo-MDRRF adjust
the QEP plan to react the bandwidth fluctuation between
Taiwan and Sydney around 5:25. Turbo-MDRF does not
change the QEP since it only considers the volume of
data reduction.
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Figure 11: Query completion times under the five
schemes.

TPC-H benchmark [8] contains 22 queries with broad
industry-wide relevance. Among the 22 queries, we ig-
nore those queries that process only one or two tables,
as there is no alternative joins when performing the QEP
adjustment. As in Fig. 11, we run the 10 queries on the
cluster including 33 instances across the 8 regions under
the five schemes. Each region contains 4 instances, and

11

• TPC-H benchmark


• Google Cloud


- 33 instances across 
8 regions
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Query

Turbo-SCTF 
• 25.1-38.5%


Turbo-MDRF 
• 12.6-37.1%


Turbo-MDRRF 
• 25.2-41.4%
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Pairwise Join

The completion time 
distributions of 
pairwise joins. 

!23

0

20

40

Q2
0

100

200

300

Q3
0

100

200

Q5
0

100

200

300

Q7
0

100

200

300

Q8

0

100

200

300

400

Q9
0

100

200

Q10
0

20

40

Q11
0

100

200

300

Q18
0

200

400

600

Q21

Baseline
Clarinet

Turbo-SCTF
Turbo-MDRF

Turbo-MDRRF

St
ag

e 
co

m
pl

et
io

n 
tim

e 
(s

)
St

ag
e 

co
m

pl
et

io
n 

tim
e 

(s
)

Co
m

pl
et

io
n 

tim
e 

(s
)

C
om

pl
et

io
n 

tim
e 

(s
)

JOIN

tables

reduce

maps



Case Study

The Gantt chart of 
the query Q21
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Related Work
the extra instance is configured as the master node. For
each of the five schemes, we run the 10 queries five times
and record the query completion times.

Compared to the baseline, the overall query comple-
tion times is reduced by 25.1% to 38.5% for Turbo-
SCTF (32.6% on average), 12.6% to 37.1% for Turbo-
MDRF (27% on average) and 25.2% to 41.4% for Turbo-
MDRRF (34.9% on average).

Figure 12: The distribution of stage completion times
under the five schemes.

We plot all the stage completion times in Fig. 12.
Compared to the baseline and Clarinet, the three policies
of Turbo have reduced the maximum stage completion
times for most stages, which indicates there are less de-
layed stages. Turbo-MDRF fails to choose the right join
when running query Q10.

7 Related Work

A number of recent studies have attempted to improve
the performance of geo-distributed data analytics. Turbo
adds to the rich literature on query optimization in
both distributed database systems and big data analytics
frameworks. Essentially, Turbo shows how to enable the
query optimizer to react to runtime dynamics.

Most existing work have explored low-layer optimiza-
tions to improve GDA query performance such as data
placement and task scheduling, as summarized in Ta-
ble 5. Iridium [20] seeks a tradeoff between data lo-
cality and WAN bandwidth usage by data movement
and task scheduling. Geode [26] jointly exploits input
data movement and join algorithm selection to minimize
WAN bandwidth usage. WANalytics [27] optimizes and
replicates data to minimize total bandwidth usage. Jet-
Steam [21] uses data aggregation and adaptive filtering
to support data analytics. SWAG [16] coordinates job
scheduling across datacenters to take advantage of data

Work Data
Placement

Task
Scheduling

Plan
Optimization

Working
Mode

Geode [26]
p p

static
WANanalytics [27]

p p
static

Iridium [20]
p p

static
SWAG [16]

p
static

JetSteam [21]
p

static
Clarinet [25]

p p
static

Lube [15]
p

dynamic
Graphene [14]

p
static

Turbo
p

dynamic

Table 5: Related work.

locality and improves GDA performance.Graphene [14]
packs and schedules tasks to reduce job completion times
and increases cluster throughput.

The closest work to us is Clarinet [25], which selects
the optimal query execution plan based on the WAN con-
dition before the query is executed. Once a plan is se-
lected, Clarinet leaves it oblivious to the varying runtime
environment.

However, most of the existing solutions require the
full stack of the original data processing frameworks to
be re-engineered. Turbo has carefully designed a ma-
chine learning module to enable online query planning
non-intrusively. a few work have applied machine learn-
ing techniques to perform resource management [12, 19],
workload classification [24], cluster configuration [9]
and database management system tuning [23].

8 Conclusion

In this paper, we have present our design and implemen-
tation of Turbo, a lightweight and non-intrusive system
that orchestrates query planning for geo-distributed an-
alytics. We argue that, in order to optimize query com-
pletion times, it is crucial for the query execution plan to
be adaptive to runtime dynamics, especially in wide area
networks. We have designed a machine learning module,
based on careful choices of models and fine-tuned fea-
ture engineering, that can estimate the time cost as well
as the intermediate output size of each reduce and shuf-
fle stage (including joins) during query execution given
a number of easily measurable parameters, with an ac-
curacy of over 90%. Based on quick cost predictions
made online in a pipelined fashion, Turbo dynamically
and greedily alters query execution plans on-the-fly in re-
sponse to bandwidth variations. Experiments performed
across geo-distributed Google Cloud regions show that
Turbo reduces the query completion times by up to 41%
based on the TPC-H benchmark, in comparison to de-
fault Spark SQL and state-of-the-art optimal static query
optimizers for geo-distributed analytics.
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Conclusion

• Turbo: dynamic query planning with awareness of WAN bandwidths


• Data-driven cost estimation of pairwise join with accuracy over 95%


• Greedy strategies that reduces the query completion times by up to 41% 
based on the TPC-H benchmark 
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The End    Thank You


