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Abstract—This paper aims at systematically analyzing the
pricing schemes in data center network. The interaction between
a monopolistic operator and customers in the network is modeled
as Stackelberg game. In this model, both homogeneous- and
heterogeneous-customer scenarios are analyzed. In homogeneous
customer case, a special scenario is that only a single customer
exists in the network. In this scenario, we observe that the
Stackelberg equilibrium will lead to a Pareto-inefficient outcome.
To address this problem, a two-part pricing scheme is proposed
to derive a Pareto efficient outcome and benefit both the
operator and customers. When there are an infinite number
of homogeneous customers in the network, our analysis shows
that customers’ selfish action may incur zero utility to them and
operator can achieve all the utility by announcing an appropriate
price. As to the heterogeneous customer case, we not only analyse
how the operator should price the network resources, but also
introduce Paris Metro Pricing (PMP) scheme to further increase
operator’s profit. Since the operator’s profit is not a concave
function of the resource price, these studies are conducted by
simulation.

Index Terms—Data Center Network, Stackelberg game, Paris
Metro Pricing

I. INTRODUCTION

In recent years, there are a growing number of researchers
working on the network economics. The center issue of net-
work economics is a pricing problem. Every customer should
afford the corresponding charge for requesting resource, such
as the bandwidth, application and data. Given this price, each
customer selfishly determines how many resources it requests
from the network. The operator can not only recover its cost
and earn profit by announcing an appropriate price [1, 2],
but also reduce the congestion of the network and control the
traffic density [3, 4]. In this paper, we will focus on how a
data center network operator can maximize its profit (We also
say the profit of operator as its utility without discrimination)
by announcing an appropriate price.

A data center is a facility used to host computer systems
and associated components, such as telecommunications and
storage systems. In data center network, each customer re-
quests resource from the data center for its special purpose [5].
To the best of our knowledge, all the existing works on
pricing problem focus on the traditional transit networks,
where operator makes his “best effort” to deliver customer’s
data [1, 4, 6]. Therefore, researchers usually assume that the

customer’s utility is a continuous, increasing and concave
function of the quality of service (QoS) [1, 7]. But there is still
another form of utility function widely existing in data center
networks. In this case, the customer’s utility should be zero if
the QoS is weaker than a customer’s requirement, and it has
a step at the QoS threshold. When the QoS is stronger than a
customer’s requirement, the utility has only a slight increase
with the QoS improvement. Since the utility function is not
convex/concave any more, the traditional analysis on transit
network is not applicable. Our work exactly focuses on this
case where the customer’s utility function is of step-form.

Two charging methods can be used by the operator. One
is the fixed pricing method that the operator charges each
customer a deterministic fee c, which is independent of the
quantity of resources the customer requesting. More realisti-
cally, the operator adopts a demand relative pricing method [1],
i.e. the fee depends on the resource quantity customer request
from the network. The later pricing method is assumed in this
paper.

In terms of the number of operators in the data center
network, there are three major conditions which should be
studied.

We say that all the customers who have the same QoS
requirement in a monopolistic market are homogeneous, or
they are heterogeneous customers. In this case, the operator
may need a different pricing scheme from that in the market
with homogenous customers. Further more, Paris Metro pric-
ing (PMP) scheme has potential to further increase operator’s
utility. All the above scenarios in monopolistic market are
studied in this paper.

There are many approaches in designing the pricing scheme,
such as the cost-based approach, the optimization-based ap-
proach and edge pricing [8]. Besides these approaches, the
approaches based on game theory are most commonly used. In
the game theoretic model, There are three choices to model the
interaction between operator and customer: two person game,
leader-follower games (Stackelberg game 1) and cooperative
game (bargaining). The leader-follower game is a good method
to model the interaction between operator and customers. But
this method usually cannot obtain a Pareto-efficient solution.

1the description of the Stackelberg Game model is given in [9]



To solve this problem, researchers ask cooperative game for a
help. Nash bargaining is one of the cooperative game methods
to obtain a Pareto-efficient solution. The player can set the
threat value [10] of the Nash bargaining as the outcome of
the leader-follower game. But the solution of Nash bargaining
is usually not equilibrium and each player has a incentive to
deviate from this solution. One more serious drawback of the
cooperative game is that it is difficult to design a protocol to
apply bargaining in a realistic network.

In this paper, we also formulate the interaction between op-
erator and customers as a leader-follower game. But different
from previous work, we propose a new pricing scheme to get
a Pareto-efficient solution and further increase the operator’s
utility. It is much more convenient to be used in the realistic
network than Nash bargaining.

The main contributions of our work can be summarized as
follows:
• We systematically analyze how a data center network

operator should design pricing schemes in a monopolistic
market to maximize its profit.

• When all the customers in the network are homogeneous,
though the traditional analysis on transit network can
be transplanted to our model with few modifications,
the outcome may not be Pareto-efficient at Stackelberg
equilibrium. We design a two-part pricing scheme to
solve this problem. Our scheme is much more convenient
than Nash bargaining method [1] to be used in the
realistic network.

• When customers in the network are heterogeneous, by
approximating customer’s utility function as a standard
step function, we not only study how the operator should
price network resources to maximize its profit, but also
analyze how the PMP scheme can be used to further
increase operator’s profit. As far as we know, there is
no existing work on how to assign resources to each
subnetwork when PMP scheme is used.

The rest of the paper is organized as follows. In Section II
and Section III, homogeneous-customer cases are analyzed.
Section II assumes that there is only a single customer in the
network while Section III assumes there are an infinite number
of customers. Section IV and Section V study the cases in
which customers have different QoS requirement. Section IV
shows how a operator should announce a price for resource to
maximize its profit, and Section V introduces PMP schemes
to help operator in further increasing its utility. After that,
we discuss some related works in Section VI and conclude in
Section VII.

II. SINGLE CUSTOMER

In this section, we study the case that there is only a single
customer in the market who tries to maximize its utility by
requesting resource from data center. We assume that the
customer earns f(d) from d units of demands, where f(d)
is an increasing and concave function of d. It means that the
more resources requested from the network, the more utility
the customer will get, but the marginal utility will decrease

due to the QoS deterioration (Since all the demands are of
the same QoS requirement, we only study the case that the
QoS requirement is met. Otherwise, the customer will get no
utility and then it should decrease its demand quantity.). Let
g(d) denote the energy consumption of the operator if it gives
d units of resource to the customer and v denotes the cost
which the operator should pay for each unit of energy. Usually,
g(d) is a convex function [11]. Now, the customer’s utility is:

U(d, p) = f(d)− pd (1)

if the operator charges a fee p for each unit of demands. And
the operator’s utility is:

V (d, p) = pd− vg(d) (2)

For a given p, the customer may choose d such that

∂U(d, p)

∂d
= f ′(d)− p = 0

to maximize its utility. That is to say

d = f ′−1(p) = h(p) (3)

where h(·) is the inverse function of f ′(·). (Since f(·) is a
concave function, f ′(·) is a decreasing function and its inverse
function must exist.) Combining (2) and (3), we have

V (d(p), p) = ph(p)− vg(h(p))

Therefore, the operator can maximize its utility by solving

dV (d(p), p)

dp
= h(p) + ph′(p)− vg′(h(p(h))h′(p) = 0 (4)

From (3) and (4), the Stackelberg equilibrium can be solved.
But there remain some questions: 1) Does Stackelberg equi-
librium always exist? 2) Is the outcome at Stackelberg equi-
librium Pareto-efficient? 3) If 2) is not the case, how to get
a Pareto-efficient solution? To answer these questions, we
provide two numeric examples:
Example1: In this example, we set f(d) = ln d, which is a
commonly used utility function [7] and g(d) = dα, since when
the load on an equipment is x, the energy curve of this equip-
ment is often modeled by a polynomial function g(x) = µxα,
where µ and α are device specific parameters [11]. Using (3),
we know the customer will request d(p) = 1/p units resource
from the network for any given p. In this case

dV (d(p), p)

dp
=

1

p
+ p(− 1

p2
) + vap−a−1 = vap−a−1 > 0

It means that the higher price the operator announces for each
unit of resource, the larger utility it may get. Hence, there is
no Stackelberg equilibrium.
Example2: The only difference between this example and
Example 1 is that for f(d) =M −Me−d in this example, M
is a constant. Similarly, from (3), it is known that the customer
will request d(p) = − ln(p/M) units of resource for a given p
and then we can use (4) to derive that the operator will choose
a price p such that

ln
p

M
+ 1 = vα

1

p
(− ln

p

M
)α−1
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Fig. 1. How the operator determines its price in Example2

to maximize its utility. To get a numeric solution, we set
M=10, v=5 and α=2. Then, the operator will charge a fee
6.6961 for each unit of resource and the customer will request
0.4011 unit resource from network. Correspondingly, the out-
come of this game is (0.6184,1.8814).

For each price p the operator announces, the customer can
determine its demand quantity through (3) and it results in
a curve in the utility space (U, V ). Fig. 1 shows such curve
associated with Example 2. A rational operator may choose
the price which will maximize its own utility. This price is
exactly corresponding to the Stackelberg equilibrium.

It is worth noting that the total utility of the system
U(d, p) + V (d, p) = f(d) − vg(d) is only determined by d.
Fig. 1 also shows the Pareto frontier to Example 2, on which
total utility of the system is 2.7023. On the Pareto frontier, if
the customer sends more/less traffic into the network, it will
result in a lower-left moving to the line. From the numeric
example we can see that to get a Pareto efficient outcome
and benefit both the customer and the operator, the customer
should request more resource from the network, meanwhile,
the operator should reduce the price of each unit of resource.
Theorem 1: Assume the demand quantity sent by the customer
at Stackelberg equilibrium and Pareto efficient solution are d(s)

and d(o), respectively, then d(s) ≤ d(o). If we refer p(s) and
p(o) as the corresponding price which can force the customer
send d(s) and d(o) units demand into the network, there must
be p(s) ≥ p(o).
Proof: We first prove the later part of this theorem by contra-
diction. Assume p(s) < p(o), from (3) we know d(s) = h(p(s))
and d(o) = h(p(o)). Since f(d) is a concave function, f ′(d)
must be a decreasing function and so is h(p), which is the
inverse function of f ′(d). Therefore, d(s) > d(o).

U(d(o), p(o))− U(d(s), p(s))
= f(d(o))− f(d(s))− [f ′(d(o))d(o) − f ′(d(s))d(s)]
= f ′(ξ)[d(o) − d(s)]− [f ′(d(o))d(o) − f ′(d(s))d(s)]
(ξ ∈ (d(o), d(s)))
< f ′(ξ)[d(o) − d(s)]− f ′(d(s))[d(o) − d(s)]
= [f ′(ξ)− f ′(d(s))][d(o) − d(s)]
< 0

The first equation is derived from (3), the second equation can
be obtained by using Lagrange’s mean value theorem and the
inequations in the fourth line and the last line are due to the
fact that f ′(d) is a decreasing function and f ′(d(o)) > f ′(ξ) >
f ′(d(s)).
d(o) is the demand quantity inducing a Pareto efficient

outcome, so that

U(d(o), p(o)) + V (d(o), p(o)) ≥ U(d(s), p(s)) + V (d(s), p(s))

Therefore, we have V (p(o), d(o)) ≥ V (p(s), d(s)), which
means that if the operator set p(o) to be the price for each unit
of resource, it may obtain more utility than that at Stackelberg
equilibrium. Contradiction occurs here and p(s) ≥ p(o) must
be held. Since h(p) is a decreasing function of p, d(s) =
h(p(s)) ≤ h(p(o)) = d(o). �

Considering that the demand quantity sent by the customer
is only determined by the resource margin cost, so the operator
can require a fixed price for the customer’s resource request
to guarantee its utility and reduce the margin cost of resource
to induce a Pareto efficient outcome, say the price for d units
of resource is:

B(d, p) = P + pd (5)

Now, the utility function to the customer and the operator will
be

Ua(d, p) = f(d)−B(d, p) (6)

and
Va(d, p) = B(d, p)− vg(d) (7)

respectively.
If only the customer can get utility by requesting some

demand from network, i.e. for given P and p, there exists
d, such that U(d, p) > 0, this pricing scheme will work.
Theorem 2: Assume

T (d) = U(d, p) + V (d, p)

If the operator set{
p = p(o)

P = V (d(s), p(s))− V (d(o), p(o)) + 1
2 (T (d

(o))− T (d(s)))

the outcome will be Pareto efficient and both the operator and
the customer will get more utility than that at Stackelberg
equilibrium.
Proof: For the cost given in Theorem 2,

Ua(d, p) = f(d)− (P + p(o)d)

The customer will choose the demand quantity such that

∂Ua(d, p)

∂d
= f ′(d)− p(o) = 0

i.e. d = d(o). In another word, the outcome will be social
optimal and Pareto efficient.
The customers utility will be

Ua(d
(o), p(o)) = f(d(o))− (P + p(o)d(o))
= U(d(o), p(o))− [V (d(s), p(s))−
V (d(o), p(o)) + 1

2 (T (d
(o))− T (d(s)))]

= 1
2 (T (d

(o)) + T (d(s)))− V (d(s), p(s))
> T (d(s))− V (d(s), p(s)) = U(d(s), p(s))



The inequation is due to the fact that T (d(o)) > T (d(s)).

Va(d
(o), p(o)) = (P + p(o)d(o))− vg(d(o))

= P + V (d(o), p(o))
= V (d(s), p(s)) + 1

2 (T (d
(o))− T (d(s)))

> V (d(s), p(s))

Hence, both the operator and the customer will get more utility
than that at Stackelberg equilibrium. �

III. INFINITE HOMOGENEOUS CUSTOMERS

In this section, we assume that there are infinite homoge-
neous customers in the network to decide whether to request
resource from the network and a single individual has only
an infinitesimal impact on the total demands in the network.
Now, the operator’s utility can also be presented as (2), but
the margin utility for customers from one unit of resource is

U(d, p) = f(d)/d− p (8)

If U(d, p) > 0, more rational customers will request resources
from the network. Therefore, U(d, p) = 0 must be held at
the Stackelberg equilibrium. Unfortunately, for a given p, d
is difficult to be solved explicitly. Accordingly, we cannot
substitute d in (2) with a function of p and maximize operator’s
utility analytically. However, the Stackelberg equilibrium can
also be solved by numeric computation.
Lemma 1: When the operator announces a higher price, there
will be less demand sent into the network.
Lemma 2: The demand quantity d is a concave function of
price of each unit resource, if and only if f ′′(d)d′ > 2. 2

Theorem 3: If f ′′(d)d′ > 2, V (d(p), p) is a concave function
of p.
Proof: Since f(d) is a concave function while g(d) is a convex
function, V (d, p) = f(d)− vg(d) is a concave function of d.
From Lemma 1 and Lemma 2, d is a decreasing and concave
function of p. Therefore, V (d(p), p) is a concave function of
p [13]. �

Considering that

f ′′(d)d′ = f ′′(d)d2

f ′(d)d−f(d)

= f ′′(d)d
f ′(d)−f ′(d∗) =

f ′′(d)d
f ′′(d∗∗)(d−d∗)

where d∗∗ ∈ (d∗, d). Usually, the customers in a market have
decreasing absolute risk aversion, therefore f

′′′
(d) > 0 [14].

It means f ′′(d) > f ′′(d∗∗) and d∗ > d/2, so that f ′′(d)d′ > 2
is usually held in realistic network.

Algorithm 1 is proposed to search such Stackelberg equilib-
rium if V (d(p), p) is a concave function of p. There are two
phases in this algorithm. The aim of Phase 1 is to set p3 larger
than pmax. In Phase 2, the size of feasible range is reduced
by trisection method. With the range reduction, pi (for i=1,
2, 3, 4) will converge to the point where operator’s utility is
maximized.

When V (d(p), p) is not a concave function of p, we can only
leverage fixed-step-size searching method. In this method, we
try different prices for operator and calculate the customers’

2For brevity, the proof of Lemma 1 and Lemma 2 is given in [12]

Algorithm 1: Algorithm to derive Stackelberg equilibrium
Input: The utility function users can earn from d unit
resource f(d), energy consumption function g(d), the
cost of unit of energy v and a small number ε.
Output: The Stackelberg equilibrium (p∗, d∗)
Initialize: p1 = pmin, p2 = pmin + 1/3(pmax − pmin),
p3 = pmax − 1/3(pmax − pmin), p4 = pmax. Given pi,
compute di by solving equation (8) for i=1, 2, 3, 4
/* Phase 1*/
while (V (p3, d3) < V (p4, d4)) do

p3 = 1/2(p4 − p3) and update d3 by solving (8);
end
/*Phase 2*/
while (p4 − p1 > ε) do

if V (p3, d3) > V (p2, d2) then
p1 = p2, p2 = p3, p3 = 1/2(p3 + p4);
d1 = d2, d2 = d3 and update d3 by solving (8);

else
p4 = p3, p3 = p2, p2 = 1/2(p1 + p2);
d4 = d3, d3 = d2 and update d2 by solving (8);

end
end
p∗ = 1/2(p1 + p4) and get d∗ by solving (8);
return (p∗, d∗);
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Fig. 2. Price of resource vs. operators utility in Example 3

response by solving U(d, p) = 0. The price at Stackelberg
equilibrium p(s) will be the one maximizing operator’s utility
and the corresponding demand quantity is the solution of
U(d, p(s)) = 0.
Example 3: In this example, we set all the parameters as
the same in Example 2. At first, we try different p for the
operator and make customers respond each price according to
U(d, p) = 0. This interaction will lead to a curve in operator’s
utility space as shown in Fig. 2. It can be seen that when the
price is relatively low, the operator announces a larger price
may improve its utility. Using Algorithm 1, it can be found that
the Stackelberg equilibrium is (7.63, 0.5671) and the operator
obtains 2.7203 units utility at Stackelberg equilibrium which
is exactly the maximal system total utility in Example 2.

As a result, the operator increases the price it announces
and customer requests less resource from the network. Both of
these actions hurt other’s utility and lead to a Pareto-inefficient
equilibrium.

IV. HETEROGENEOUS CUSTOMERS WITHOUT PMP

Usually, every customer in realistic network has its spe-
cial QoS requirement and correspondingly obtains differ-



ent marginal utility. In this section we will study such a
heterogeneous-customer scenario. Assuming that each cus-
tomer has a QoS requirement s, the total demand quantity
in the network is d and the network resource capacity is C.
To continue our analysis, we give following assumptions: each
customer has infinitesimal demands with QoS requirement s,
s has a distribution density function q(s), u(s) is a decreasing
function of s, and the total demand quantity (even some are
not sent into the network) in the network is D.

Given the price p, only the customers whose marginal
utility is larger than p (QoS requirement is stronger than
u−1(p)) would send demand into the network. Assume that
the strongest QoS requirement can be satisfied is s, then all
the customers whose QoS requirement are in [s, u−1(p)] will
send demand into the network, hence

D

∫ u−1(p)

s

q(x)dx = sC (9)

Whenever the strongest/weakest QoS requirement can be sat-
isfied in the network is fixed, (9) can be used to find the
weakest/strongest QoS requirement in the network, so that we
refer (9) as the QoS requirement constraint. The customers’
total utility is

U(s, p) = D

∫ u−1(p)

s

u(x)q(x)dx− pD
∫ u−1(p)

s

q(x)dx

(10)
and the operator’s utility is

V (s, p) = p

∫ u−1(p)

s

Dq(x)dx−vg(
∫ u−1(p)

s

Dq(x)dx) (11)

If we can solve (9) explicitly, say s = h(p), (11) can be
modified to be

V (h(p), p) = p

∫ u−1(p)

h(p)

Dq(x)dx− vg(
∫ u−1(p)

h(p)

Dq(x)dx)

From ∂V (s,p)
∂p = 0,

pD[I ′(p)q(I(p))− h′(p)q(h(p))] +D
∫ I(p)
h(p)

q(x)dx =

vDg′(D
∫ I(p)
h(p)

q(x)dx)[I ′(p)q(I(p))− q(h(p))h′(p)]
(12)

is obtained, where I(p) = u−1(p). The Stackelberg equi-
librium can be obtained by getting p from (12) and then
using s = h(p) to calculate s. Unfortunately, (9) cannot be
solved explicitly in most cases and we can only ask numeric
computation for help solving Stackelberg equilibrium.

In this case, we cannot guarantee V (s(p), p) is a concave
function of p, so that Algorithm 1 dose not suit this case. To
get the price which should be announced by the operator, we
can only use the cruel fixed-step-size searching algorithm to
find the price which can maximize the operator’s utility. The
algorithm is shown in Algorithm 2.
Example 4: In this example, we set u(s) = e−s, q(s) = e−s,
g(d) = d2, D = 2, C = 1 and v = 1. For a given p, (9)
is used to get 2e−s − 2p = s at first, in which s cannot be
solved explicitly. Algorithm 2 can also be used to calculate the
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Fig. 3. Impact of the operator’s price on players’ utilities in Example 4

utility of the operator and customers for different price. We
can observe in Fig. 3 that there is only a single peak value at
the operator’s utility and the operator can increase its utility
by announcing a larger price if p ∈ (0, 0.56), otherwise larger
price will result in a lower utility to the operator. Therefore, the
operator may announce a price 0.56 to get its maximal utility
0.1556. In this case, the customers whose QoS requirement
are in [0.3250, 0.5712] will send demand into the network
and they will get 0.0264 unit utility in total.

Algorithm 2: Algorithm to determine the price customer
should announce

Input: customers’ marginal utility function u(s), the
density distribution of QoS requirement q(s), the energy
consumption function g(d), network resource capacity C,
total available demand quantity D, the cost of one unit
of energy v and the accuracy requirement ε.
Output: The price maximizing the operator’s utility p∗

initialize: p∗ = p = pmin, s∗ is derived by solving (9)
for given p∗, V ∗ = V (s∗, p∗) which is calculated by (11);
while (p < pmax) do

s is derived by solving (9) for a given p;
V = V (s, p) which is calculated by (11);
if (V > V ∗) then

p∗ = p;
V ∗ = V ;

end
p = p+ ε;

end
return p∗;

Just as seen in Section II, the maximal total utility of the
system is only determined by the quantity of demand sent into
the network. Fig. 4 shows how the total utility of the system is
impacted by which demands are sent into the network. It can
be observed that if the strongest QoS requirement metric of the
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Fig. 4. Strongest QoS vs. total utility of the system in Example 4



demands sent into the network is 0.40, the total utility of the
system will be maximized. In this case, the customers whose
QoS requirement are in [0.40, 0.7543] will send demand into
the network and the maximal total utility of the system is
0.1881 which is larger than that at the Stackelberg equilibrium
0.182.

V. HETEROGENEOUS CUSTOMERS WITH PMP

Considering the scenario in Section IV, all the customers
who send demand into the network share the same QoS but
obtain different utility and the demand quantity in the network
is limited by the strongest QoS requirement. Intuitively, we
can partition all the resources into two parts to serve the
demands. There remain two questions in this issue: 1) If the
network resources have been partitioned into two parts, how
to determine the resource price for each subnetwork? 2) If the
network resources have not been assigned to each subnetwork,
how should operator partition the network resources?

A. How to determine the price of each subnetwork

In this subsection, we assume that operator’s total resource
have been partitioned into two equivalent parts (Subnetwork
1 and Subnetwork 2) whose resource capacity are C1 and
C2 respectively, such that C1 = C2. The operator should
determine the price it announces for each subnetwork p1 and
p2. In this paper, we assume p1 < p2. (In realistic project,
we can assume p1 > p2 and repeat the same process in this
paper and employ the better solution.) Let s1 and s2 denote the
strongest QoS requirements existing in each subnetwork, then
s1 > s2. Now, the total utility of customers can be expressed
as

U(s1, s2, p1, p2)

= D
∫ u−1(p1)

s1
u(x)g(x)dx+D

∫min(s1,u
−1(p2))

s2
u(x)g(x)dx

−p1D
∫ u−1(p1)

s1
q(x)dx− p2D

∫min(s1,u
−1(p2))

s2
q(x)dx

and s1 and s2 are determined by D
∫ u−1(p1)

s1
q(x)dx = s1C1

and D
∫min(s1,u

−1(p2))

s2
q(x)dx = s2C2. The operator’s utility

is

V (s1, s2, p1, p2)

= p1D
∫ u−1(p1)

s1
q(x)dx+ p2D

∫min(s1,u
−1(p2))

s2
q(x)dx

−vg(D
∫ u−1(p1)

s1
q(x)dx+D

∫min(s1,u
−1(p2))

s2
q(x)dx)

To study how operator should announce the resource price in
each subnetwork, we first give following proposition.
Proposition 1: If the price announced in Subnetwork 1 is
p1, the price announced in Subnetwork 2 p2 should be in
[u(s1), pmax], where s1 is the strongest QoS requirement in
Subnetwork 1 which can be calculated by solving , and pmax
is determined by the strongest QoS requirement may exist in
the network. 3

3The proof of Proposition 1 is given in [12]

Algorithm 3: Algorithm to determine the price for each
subnetwork

Input: Customers’ marginal utility function u(s), density
distribution of QoS requirement q(s), energy consump-
tion function g(d), resource capacity for each subnet-
works C1 and C2, total available demand quantity D, the
cost of unit of energy v and the accuracy requirement ε.
Output: The price maximizing operator’s utility p∗1 and
p∗2
initialize: p1 = p∗1 = p∗2 = 0, V ∗ = 0;
while (1) do

s1=the solution of (13);
p2 = u(s1);
if (p2 > pmax) then

return p∗1, p∗2;
end
while (p2 < pmax) do

Calculate V by (13);
if (V > V ∗) then

V ∗ = V ; p∗1 = p1; p∗2 = p2;
end
p2 = p2 + ε;

end
p1 = p1 + ε;

end

From Proposition 1, we can re-formulate the utility of
operator as

U(s1, s2, p1, p2)

= D
∫ u−1(p1)

s1
u(x)g(x)dx+D

∫ u−1(p2)

s2
u(x)g(x)dx

−p1D
∫ u−1(p1)

s1
q(x)dx− p2D

∫ u−1(p2)

s2
q(x)dx

(13)

where s1 and s2 are determined by

D

∫ u−1(p1)

s1

q(x)dx = s1C1 (14)

D

∫ u−1(p2)

s2

q(x)dx = s2C2 (15)

and re-formulate the customers’ total utility as

V (s1, s2, p1, p2)

= p1D
∫ u−1(p1)

s1
q(x)dx+ p2D

∫ u−1(p2)

s2
q(x)dx

−vg(D
∫ u−1(p1)

s1
q(x)dx+D

∫ u−1(p2)

s2
q(x)dx)

(16)

When the network is divided into two parts, one more
variable should be determined and the question is even more
complex than it in Section IV. This Algorithm 3 is also based
on fixed-step-size searching.
Example 5: In this example, we partition the network in
Example 4 into two subnetworks with the same resource
capacity 0.5 and 0.5. Using Algorithm 3, we derive that the
optimal pricing scheme for operator is to set the resource price
in Subnetwork 1 to be 0.52 and announce a price 0.6339
in Subnetwork 2. In this case, the utility for operator and
customers are 0.1851 and 0.0199 respectively. Comparing with



Example 4, the operator can obtain larger utility than that
without PMP scheme. More importantly, with PMP scheme,
the system total utility 0.1851+0.0199=0.2050 is even larger
than the maximal system total utility without PMP scheme,
which is only 0.1882. The reason is that, without PMP, many
customers share better QoS than they required and the operator
does not charge these customers enough fee, so that there are
a lot of utility in the system wasted.

For better understanding of this example, we further study
how some of the variables change with the price announced
in Subnetwork 1. Fig. 5 shows low price may attract more
customers to request resource from Subnetwork 1 and cost
operator more energy but the operator cannot get enough
money from customers in Subnetwork 1 to cover the energy
consumption cost. In Fig. 6, because if the price in Subnetwork
1 is relatively low, the increasing of its price will move out
many demands from Subnetwork 1 and the operator should
announce a lower price in Subnetwork 2 to attract these
demands into Subnetwork 2 and get more utility from them.
When the price in Subnetwork 2 is relatively large, price in
Subnetwork 2 will increase with the increasing of the price in
Subnetwork 1 due to the constraint p1 < p2. From Fig. 7, it
is because the operator can charge more fee for per unit of
resource in Subnetwork 1 while there will be more demands
in Subnetwork 2 due to the reduction of its resource price.
But at some price (0.46 in our example), operator will not get
more profit from customers because there are fewer and fewer
demands sent into the network with the increasing of resource
price.

B. How to assign resource to each subnetworks

In previous subsection, we assume that the operator’s re-
sources have already been assigned to each subnetworks.
However, how to partition the total resource into two parts is
still an important issue. We study how the operator partition its
resource can maximize its utility by simulation. The algorithm
is shown in Fig. 8 and we also give an example under this
condition.
Example 6: In this example, all the parameters are set as them
in Example 4. Fig. 8 shows how the operator’s and customers’
utility change with the resource capacity of Subnetwork 1. It
can be observed that the operator should divide the network by
C1 = 0.45 and C2 = 0.55. Fig. 9 depicts that price of resource
in each subnetwork to be 0.52 and 0.6256, respectively when
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Fig. 5. Price announced in Subnetwork 1 vs. two players’ utility in Example
5. The larger price will lead to the reduction of customers’ utility, just as the
same in Example 4.
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Fig. 6. Price announced in Subnetwork 1 vs. Price announced in Subnetwork
2 in Example 5. The price announced in Subnetwork 2 should first decrease
with the increasing price in Subnetwork 1 when the price in Subnetwork 1 is
relatively low.
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Fig. 7. Price announce in Subnetwork 1 vs. the charging in each subnetwork.
When the price in Subnetwork 1 increases from 0, operator can charge more
fee from both subnetworks.

the operator get maximal utility. In this way, the operator can
obtain utility 0.1854 and customers’ total utility is 0.0195.
It shows that the operator get larger utility at the cost of
loss of system total utility. Accordingly, it is difficult to get
the optimal resource Example 6: In this example, all the
parameters are set as them in Example 4. Fig. 8 shows how
the operator’s and customers’ utility change with the resource
capacity of Subnetwork 1. It can be observed that the operator
should divide the network by C1 = 0.45 and C2 = 0.55.
Another observation is that the operator and customers’ pricing
scheme are even not a convex/concave function of Subnetwork
1’s resource capacity, so is the customers’ utility. Therefore,
it is difficult to get the optimal resource allocation scheme
analytically.

VI. RELATED WORK

With the rapid development of communication networks,
there has been a surging interest in network pricing research
over the past decade. But most of these works are focusing on
congestion control, i.e. reduce the congestion of the network
and control the traffic density [3, 4, 15, 16]. In these works,
some of them determine the pricing schemes by considering
the priority property of service [4], while some others using
bargaining methods [3]. Though all these works are not
focusing on how to maximize operator’s profits, the modeling
methods can be employed in our issue on how to maximize
operator’s utility.

The pricing scheme is also used in wireless communication
systems. It is applied in spectrum sharing [17], utility opti-
mization [18], power control [19] and QoS guarantee [20].
The analysis in [20] is very similar to our work. It determines
an appropriate pricing scheme for voice over WLAN through
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Fig. 9. Resource capacity in Subnetwork 1 vs. resource price in each
subnetwork

a micro-economic framework that considers the trade-off be-
tween perceived QoS and paid price in the users’ request.
However, [20] focus on the network QoS guarantee, while
our work is on maximizing operator’s profit.

There are also some works on operator’s profit [1, 2]. We
can treat [1] as a parallel story of our work. In parallel
to [1], we focus on how to maximize operator’s profit in data
center networks, where customers’ utility is a step function of
network’s QoS.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study the network pricing schemes in
data center network by modeling the pricing problem as a
Stackelberg game. Both the cases that the customers in the
network are homogeneous and heterogeneous are analyzed.

As for the case that customers in the network are heteroge-
neous, we study how the operator announces price by numeric
computation and find that the Stackelberg equilibrium cannot
maximize the total utility of the system. When PMP scheme
is introduced into the network, we study not only how the
operator should announce resource price in each subnetwork,
but also how to assign its resource to each subnetwork.

This paper only focuses on the monopolistic market scenar-
ios and the duopoly market cases are still unsolved. Our future
work is to systematically analyze the pricing scheme in data
center network in a duopoly market.
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