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ABSTRACT
Operating at a large scale, data analytics has become an essen-
tial tool for gaining insights from operational data, such as user
online activities. With the volume of data growing exponentially,
data analytic jobs have expanded from a single datacenter to multi-
ple geographically distributed datacenters. Unfortunately, designed
originally for a single datacenter, the software stack that supports
data analytics is oblivious to on-the-fly resource variations on inter-
datacenter networks, which negatively affects the performance of
analytic queries. Existing solutions that optimize query execution
plans before their execution are not able to quickly adapt to resource
variations at query runtime.

In this paper, we present Turbo, a lightweight and non-intrusive
data-driven system that dynamically adjusts query execution plans
for geo-distributed analytics in response to runtime resource varia-
tions across datacenters. A highlight of Turbo is its ability to use
machine learning at runtime to accurately estimate the time cost of
query execution plans, so that adjustments can be made when nec-
essary. Turbo is non-intrusive in the sense that it does not require
modifications to the existing software stack for data analytics. We
have implemented a real-world prototype of Turbo, and evaluated
it on a cluster of 33 instances across 8 regions in the Google Cloud
platform. Our experimental results have shown that Turbo can
achieve a cost estimation accuracy of over 95% and reduce query
completion times by 41%.

CCS CONCEPTS
• Information systems→Database query processing;MapReduce-
based systems; • Computing methodologies→Machine learning
approaches;

KEYWORDS
Data Analytics, Distributed Systems, Machine Learning
ACM Reference Format:
Hao Wang, Di Niu, and Baochun Li. 2018. Dynamic and Decentralized
Global Analytics via Machine Learning. In Proceedings of SoCC ’18: ACM
Symposium on Cloud Computing, Carlsbad, CA, USA, October 11–13, 2018
(SoCC ’18), 12 pages.
https://doi.org/10.1145/3267809.3267812

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267812

1 INTRODUCTION
All major Internet organizations and companies, such as Google,
Facebook and Amazon, host their services across multiple geograph-
ically distributed datacenters to push services closer to end users.
Hundreds of terabytes (TBs) or even petabytes (PBs) of data, such
as user activity history and system logs, are gathered at these geo-
distributed datacenters [9, 15, 17] on a regular basis. How quickly
one can perform data analytics over such vast volumes of geo-
distributed data is important to certain mission-critical tasks, such
as activity statistics, content recommendation, and online advertis-
ing.

While data-parallel processing frameworks — such as Spark [38]
and Hive [31] — have widely been adopted to handle data analytics
in a single datacenter, recent studies, e.g., Clarinet [34], Geode [35],
Iridium [29] and JetStream [30], have pointed out that it is inefficient
to first gather all the data to a single site for centralized processing,
due to the excessive bandwidth cost across datacenters. Therefore,
a number of decentralized solutions have been proposed to speed
up data analytics in a geo-distributed setting. For example, Clarinet
[34] and Geode [35] have advocated that computation (such as filter
and scan operations) should be pushed closer to data in individual
datacenters, and that data transfers should be carefully optimized
during the reduce phases (such as joins) across datacenters.

Unfortunately, most of these existing decentralized solutions
[1, 24, 29, 34] require that the full stack of the underlying data pro-
cessing system be overhauled, and possibly require re-engineering
multiple mechanisms in these systems, such as data replication,
reducer placement, task scheduling, and query execution strategy
selection. Yet, solving joint optimization problems spanning multi-
ple layers in the design space may lead to non-trivial operational
overhead and delayed reactions to runtime dynamics, such as fluc-
tuations in resource availability. There are alternative solutions,
e.g., Geode [35], that estimate the volume of the shuffling traffic
by simulating the query execution in a single datacenter. However,
such a sandbox-like approach incurs quite a large overhead, and
may not be accurate if the same query is not recurring or if the
link bandwidth is time-varying. Therefore, a large gap still exists
between the existing decentralized solutions to geo-distributed
analytics and their deployment in production environments with
real-world data.

We argue that in global analytics, decentralized query execution
must be orchestrated dynamically at runtime in order to realize its
promised benefits and full potential. An “optimal” static query exe-
cution plan (QEP) predetermined through cross-layer optimization
or simulation is unlikely to remain optimal during query execution
over large tables, since resources in the geo-distributed system,
especially the inter-datacenter bandwidth, naturally vary over time
during query execution.

https://doi.org/10.1145/3267809.3267812
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In this paper, we propose Turbo, a lightweight and non-intrusive
system that orchestrates query planning for geo-distributed ana-
lytics, by dynamically altering query execution plans on-the-fly
in response to resource variations. At the core of our system is
a carefully designed machine learning algorithm that can accu-
rately estimate the time cost and the intermediate output size of
any reduce and shuffle stage (e.g., joins) of query execution. Such
estimates are performed on the fly, given the size of input tables,
the instantaneously measured bandwidth, hardware (e.g., memory
and CPU) configurations, as well as other observable parameters
in the underlying distributed computing engine. Our system is a
non-intrusive solution, which does not require modifications to any
lower-layer functionalities regarding task placement, task schedul-
ing, data replication or query operator optimization. It is designed
to work effectively on top of any existing underlying systems, such
as Spark, Hive and Pig, through machine-learning-based runtime
cost prediction and query orchestration.

Towards a real-world design and implementation of Turbo, we
have made the following original contributions.

Case studies of realistic queries in a geo-distributed cloud.
We measured the Google Cloud platform, and our results suggest
that inter-datacenter bandwidth could fluctuate drastically within
several minutes, which is comparable to or even shorter than the
typical time to run a global analytics query. We conduct case stud-
ies based on the TPC-H benchmark [13] dataset, which contains
realistic queries and data with broad industrial relevance. We find
that, for a typical query in TPC-H executed in geo-distributed data-
centers in a decentralized fashion, dynamically reordering the joins
during query execution can reduce query completion times by as
much as 40%.

Accurate cost prediction based on machine learning. A
common existing technique for estimating the time cost of data
shuffling in geo-distributed analytics is to solve a reducer placement
problem in order to minimize the longest link finish time [29] or
the sum of finish times [34], assuming some empirical models for
network transfer times. In reality, it is cumbersome to solve these
optimization problems whenever available bandwidth varies. In
addition, the actual bandwidth used by system frameworks, such
as Spark, is not the same as the bandwidth available on the link in
question. The shuffle time also critically depends on the execution
algorithms used, such as broadcast joins v.s. hash joins, and the
sorting algorithms. Rather than using empirical models and joint
optimization, we are the first to adopt a machine learning approach
to predict the cost of any decentralized table joins based on the
characteristics of the input tables, underlying system and the net-
work. In particular, we hand-crafted a large nonlinear feature space
regarding data and the system, and relied on the ability of least
absolute shrinkage and selection operator (LASSO) to select the
most relevant features. Our machine-learning-based cost prediction
is fast, overcomes the limitation of any empirically assumed models,
and avoids the complications of joint optimization regarding task
placement, scheduling, and query execution strategies.

Non-intrusive query plan orchestration. We propose and
implement Turbo, a logic-layer query orchestration to adjust the
join orders in a QEP on-the-fly in response to changes in runtime dy-
namics, based on the lightweight lookahead cost prediction. Turbo
greedily chooses the next join it will execute to be the one with the

least lookahead cost, in terms of three different policies: 1) the least
completion time, 2) the maximum data reduction, and 3) the max-
imum data reduction rate. By using machine-learning-based cost
prediction and focusing on forward-looking join reordering, Turbo
is orthogonal to any mechanisms in the lower-level distributed com-
puting engine, and can be used on top of any off-the-shelf query
optimizers, such as Calcite [11], taking advantage of the existing
expertise in query optimization developed over decades of research.
We have implemented a prototype of Turbo and deployed it on
a fairly large Google Cloud cluster with 33 instances spanning 8
geographical regions. Our experimental results have shown clear
evidence that Turbo can achieve a cost estimation accuracy of over
95% and reduce the query completion times by up to 40%.

2 BACKGROUND AND MOTIVATION
Wefirst review howmodern data analytics frameworks, e.g., Hadoop
[3] and Spark [38], execute SQL queries in a geo-distributed setting,
and then use measurements and case studies based on the TPC-H
benchmark [13] dataset including 15K records to show the ineffi-
ciency of all existing static solutions to geo-distributed analytics.

Processing and optimizing SQL queries. In Hive [31] and
Spark SQL [7], a SQL query is first parsed into a tree called a
query execution plan (QEP), consisting of a series of basic relational
operations, such as filter, scan, sort, aggregate, and join. These
relational operations are subsequently transformed by a distributed
computing engine, such as Spark, to parallel map and reduce tasks,
which are logically organized in a directed acyclic graph (DAG)
and executed in stages following the dependencies dictated by the
DAG. For instance, operators such as SELECT, JOIN and GROUPBY
are transformed into individual map-reduce stages in the DAG.

Specifically, any SQL query involving multiple tables can be
parsed into multiple feasible QEPs. Each QEP differs from other
QEPs mainly by a different ordering of the joins of the tables and
also by the particular strategies and algorithms to execute each join.
Then, the query optimizer selects an optimal QEP either based on
rules (i.e., rule-based optimization) or based on cost models (i.e.,
cost-based optimization).

Query optimizers play a critical role in database technologies
and have been extensively studied for decades [12, 21, 23, 25, 28].
Modern query optimizers in state-of-the-art products, e.g., Apache
Calcite [11] and Apache Phoenix [6], are well suited for centralized
or parallel databases within a single datacenter. In massively paral-
lel processing (MPP) databases, high-performance data warehouse
frameworks — such as AWS RedShift [10], Apache Hive [5] and
Apache HBase [4] — can select a low-latency query execution plan
using a wide range of sophisticated optimization techniques involv-
ing both rule-based planning and cost-based modeling. These opti-
mization techniques will make a wide variety of informed choices,
such as between range scans and skip scans, aggregate algorithms
(hash aggregate v.s. stream aggregate v.s. partial stream aggregate),
as well as join strategies (hash join v.s. merge join).

Optimizing geo-distributed analytics. Yet, existing query op-
timization technologies designed for a single datacenter, such as Cal-
cite [11] and Phoenix [6], may not perform well in geo-distributed
analytics, mainly due to the heterogeneous network capacity in
wide-area networks.



Dynamic and Decentralized Global Analytics
via Machine Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Bandwidth in total 

Bandwidth per connection 

  
  
  
  
  
  
  
  
  
B

a
n

d
w

id
th

 (
M

b
p

s
)

50

100

150

200

400

600

800

Time
3:00 3:15 3:30 3:45 4:00 4:15 4:30 4:45 5:00

Figure 1: Wide-area bandwidth fluctuations between two geographic regions on the Google Cloud platform.

To address such a design deficiency, Geode [35] extends Apache
Calcite [11] to Calcite++, which adopts the query execution plan
(including the order of joins) generated by Calcite, and incorporates
additional statistics to choose the optimal join strategies (e.g., hash
joins and broadcast joins) to lower shuffle cost across wide-area
networks. In order to estimate the size of network transfers in any
QEP, it uses pseudo-distributed execution to simulate running the
QEP in a centralized datacenter. Such measurements from the sim-
ulation are then used to optimize site selection and data replication
decisions to reduce the volume of inter-datacenter traffic. However,
such a “sandbox” approach may lead to high overhead and subop-
timal performance if the same queries are not recurring, or if the
network link cost fluctuates at runtime.

Clarinet [34] further explicitly minimizes query execution times
in geo-distributed analytics in a static manner, by choosing the
shortest running QEP with the optimal join ordering among many
feasible candidate QEPs. Since the traffic between sites depends
on the placement of reduce tasks in each stage of a QEP, Clarinet
proposes to solve a joint problem of reducer placement and task
scheduling, decoupling the complex optimization problem in each
stage using various heuristics, with the objective of minimizing the
QEP’s execution time. The QEP with the shortest execution time
will be selected. As a “clean slate” design, Clarinet requires that the
full spectrum of the design space be re-engineered, and may not
be amenable to evolutionary deployment in practice, since existing
state-of-the-art query optimizers and parallel databases can not be
reused.

2.1 The Need for Dynamic Query Planning
We now show through measurements that significant bandwidth
variations exist on inter-datacenter links. Therefore, even an ini-
tially optimal QEP may become suboptimal during query execution.
We argue that QEPs need be adjusted dynamically at runtime in re-
sponse to bandwidth changes instantaneously, especially for those
queries involving multiple shuffle stages with multiple JOIN opera-
tors.

A major challenge in geo-distributed analytics is that data shuf-
fling in reduce stages must traverse links in wide-area networks.
Since cloud providers do not provide performance guarantees for
inter-region traffic on the public Internet [8, 19], the available
bandwidth on these links is fluctuating in nature [30], especially
when flows of different applications share the links. To demonstrate

30
0 

M
bp

s

150 Mbps

400 Mbps

500 Mbps
150 Mbps

DC 4

DC 2

DC 3

DC 1

10
0 

M
bp

s

customer
0.5 GB

order
3.3 GB

partsupp
2.3 GB

lineitem
15 GB

Figure 2: The cluster setup in our example showing the ben-
efits of runtime QEP orchestration.

such variations in inter-datacenter bandwidth availability, we mea-
sured inter-region bandwidth for a period of two hours on Google
Cloud, by launching two instances in separate geographic regions,
asia-east1 (Taiwan) and us-central1 (Iowa). Each instance has
a large ingress or egress bandwidth cap that is well above 2Gbps.

To saturate the bandwidth between the two instances and mea-
sure the amplitude and frequency of bandwidth variations, we
executed iperf -t10 -P5 for ten seconds involving five parallel
connections, and repeated the command once every 50 seconds.
Fig. 1 shows that both the total available bandwidth and the avail-
able bandwidth in each connection changed rapidly at the frequency
of minutes. In particular, the per-connection bandwidth fluctuated
between 14 Mbps and 147 Mbps, while the total bandwidth fluctu-
ated between 222 Mbps and 726 Mbps. Moreover, we found that
the round-trip time (RTT) between the two instances during the
measurement was consistently between 152 and 153 milliseconds.
Such stable RTTs indicate that the routing path between the two
instances remained unchanged. Therefore, we conclude that the
variations of available bandwidth were due to the contention and
sharing among flows (of different applications), which is common
in the wide-area networks.

We illustrate the benefit of adjusting QEPs dynamically with
a simple example based on real-world data. We ran a SQL query,
as shown in Fig. 3(a), which joins four tables of data realistic data
generated by TPC-H benchmark [13]. The tables are stored on four
separate sites with heterogeneous inter-site bandwidth capacities,
as shown in Fig. 2. Note that the bandwidth within each site is 12
Gbps, which is much larger than inter-site bandwidth.

We executed this query with four different strategies for QEP
selection: 1) the centralized mode, in which all the tables will be
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SELECT

  C.name, O.orderstatus,

  L.discount, PS.availqty

FROM 

  customer as C, 

  order as O,

  lineitem as L,

  partsupp as PS 

WHERE O.orderkey == L.orderkey, 

  AND PS.partkey == L.partkey,

  AND PS.suppkey == L.suppkey,

  AND C.custkey == O.custkey

(a) A SQL query example.
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Figure 3: An example SQL query and its different QEP
choices.

moved to DC3 for aggregation and the computation is only per-
formed at DC31; 2) the distributed baseline, in which a static QEP
is pre-determined by the default query optimizer of Spark SQL; 3)
Clarinet2 [34], which selects a static distributed QEP by jointly op-
timizing task placement and scheduling; 4) a dynamically adjusted
and distributed QEP, which adjusts the QEP at runtime in response
to bandwidth fluctuations.

For the purpose of illustration, we conducted this experiment
in a controlled geo-distributed cluster of four sites [26] with stable
dedicated links between the sites. To emulate bandwidth variations
which would otherwise have been observed in the wide-area net-
work, we replayed the real-world bandwidth traces collected from
Google Cloud as shown in Fig. 3(c). Specifically, we periodically
updated the Linux tc traffic control rules on both sides of the link
between DC1 and DC2, while other links in our cluster remained
stable during the experiment.

1It should be noted that the data movement time is part of the query completion time,
since data is initially distributed on different sites.
2We have only reproduced the query selection of Clarinet since the source code of its
task scheduling and network management is not open sourced.

For each of the four compared strategies, we ran the same query
five times under the same bandwidth configuration. The query
completion times in Fig. 3(b) showed that the centralized mode
took 611.7 seconds on average to finish. The baseline took 524.5
seconds on average to finish, while Clarinet took 497.5 seconds on
average. In contrast to the other methods, adjusting QEP at runtime
only took 420.7 seconds on average, which was the fastest.

Let us now analyze the QEPs chosen by the four strategies, which
explain the performance gaps. The centralized mode spent as long
as 176 seconds transferring data to one site and is thus inferior to
other distributed methods in general. Since the baseline (default
Spark) was oblivious to network bandwidth, its chosen QEP may
inadvertently have joined two large tables over a narrow link such
as the 150 Mbps link between DC2 and DC3. In contrast, Clarinet
was aware of the heterogeneity of link capacities in the wide-area
and selected the (static) QEP that was optimal only for the initial
bandwidth availability. However, the bandwidth changes between
DC1 andDC2 soon rendered the selected QEP a suboptimal solution,
delaying the join betweenDC1 andDC2 significantly. With runtime
adjustments during query execution enabled, although the initial
QEP was the same as the one selected by Clarinet, after the join of
2.3 GB partsupp table and the 15 GB lineitem table, the execution
plan was changed to the third one in Fig. 3(d). The adjusted QEP
avoided transmitting a large volume of data over the link between
DC1 and DC2, when the bandwidth on the link dropped below 150
Mbps.

Abrupt bandwidth changes are not uncommon in a public cloud
shared bymany applications. Furthermore, such bandwidth changes,
as illustrated by the example above, may occur multiple times dur-
ing the execution of a geo-distributed query, especially for large
data-intensive jobs. Therefore, an initially optimal QEP is not nec-
essarily optimal throughout the job.

3 OVERVIEW
It is a significant challenge to dynamically adjust a distributed
query execution plan at runtime. First, recomputing the optimal
query execution plan using complex optimization methods, such
as Clarinet [34] or Iridium [29], is not feasible at runtime—once a
new solution is computed, the bandwidth availability would have
changed again. Moreover, since these solutions often involve a joint
optimization problem of reducer placement and task scheduling,
they require modification to lower layers in the data analytics
engine.

We present Turbo, a lightweight non-intrusive layer that dynam-
ically orchestrates distributed query execution. Fig. 4 provides an
overview of Turbo’s architecture. Turbo works independently on
top of and complements existing distributed data analytics engines
such as Spark. It reduces query completion time by switching the
order at which different distributed tables should be joined, in re-
sponse to network bandwidth changes. The lookahead online join
reordering is enabled by a judiciously designed machine learning
engine which can predict the time cost as well as the output data
size (cardinality) of joining a pair of tables distributed on two differ-
ent datacenters, based on the table and network statistics. We also
introduce a lightweight bandwidth measurement scheme which
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Figure 5: Interpreting a pairwise join with map-reduce
stages.

can probe instantaneous inter-datacenter link bandwidth in a non-
intrusive manner. Note that Turbo leaves any lower-layer decision
intact as is in existing systems, including task scheduling, reducer
placement and specific join algorithms.

Typically, Hive and Spark SQL convert a QEP into a DAG of
map-reduce stages. The tasks within a stage are atomic threads
executing exactly the same code, yet applying to different blocks
of data. There are two types of mappings between operators and
stages: an operator applied to only a single table is executed by a sin-
gle map stage, whereas an operator involving two tables is executed
by two map stages and a reduce stage. For example, a SELECT opera-
tor σpr ice>100(orders) is interpreted as a map stage filter(order
o=>(o.price>100)), while a natural join customer ▷◁ orders is
interpreted as two map stages, map(customer c=>(c.custkey,
c.values)) and map(order o=>(o.custkey, o.values)), as
well as a reduce stage reduce(custkey, values).

In Turbo, the smallest unit for adjustment we will focus on is
a pairwise join. A geo-distributed analytics query can be parsed
into a series of pairwise joins. Each pairwise join involves only
two tables as well as some affiliated map stages in the join due to
operators on each single table such as selection (σ ) and projection
(π ). On an abstract level, each pairwise join is interpreted with map
and reduce stages as shown in Fig. 5, with the additional details
on query optimization and execution strategy optimization hidden.
Turbo aims to adjust a QEP dynamically at runtime by reordering the
pairwise joins in it during query execution. The rationale is that to
speed up geo-distributed data analytics, it is critical to concentrate
on operators that trigger data shuffles in the network such as JOIN,
while leaving the optimization of map stages performing local
computations to the lower-level system. We show that by focusing
on smart online join reordering, query execution times can be
reduced significantly for real-world workloads.

As in Fig. 4, the architecture of Turbo consists of three compo-
nents:
Model Training. The abstraction of a query into a series of pair-
wise joins makes cost estimation feasible through machine learning.
Turbo trains two machine learning models, including LASSO and
Gradient Boosting Regression Tree (GBRT), to predict the time cost
and output cardinality of a pairwise join involving two tables given
input features derived from the tables, the underlying platform,
hardware configurations, as well as the bandwidth probed on WAN
links. The training can be done based on samples collected from past
executions. In our experiment, we have created a labeled dataset
of 15,000 samples containing both the target cost values and fea-
tures, by running a series of realistic pairwise joins on datasets of
TPC-H benchmark [13] under a variety of hardware and software
settings. The models can be trained offline or updated incremen-
tally, as new samples are added to the training dataset. The basic
philosophy of our model training engine is to handcraft a range of
relevant features, using feature crossing to introduce non-linearity
and enlarging the feature space (Sec. 4.2), and finally relying on
the model selection capability of LASSO and Gradient Boosting
Regression Tree to filter out the irrelevant features. Our machine
learning model yields a prediction accuracy of 95% on queries of
TPC-H benchmark [13], which is sufficiently accurate for online
join reordering to exhibit its benefits.
Cost Estimator. During query execution, the cost of a pairwise
join will be predicted directly by the trained machine learning
models, if the two tables involved in this join each reside on a
different datacenter, based on instantaneously measured runtime
dynamics, including the available bandwidth between datacenters
probed by a lightweight non-intrusive bandwidth prober. However,
note that the records in a table might actually be distributed in
several datacenters, e.g., if these records are intermediate results
of a previous reduce stage, due to shuffling. If at least one input
table of the pairwise join in question is distributed in more than
one datacenter, we further propose a scheme in Sec. 5.1 to estimate
the cost of this pairwise join. Our cost estimator uses the trained
machine learning model as a basic building block, and generalizes
it to the case of distributed input data based on an abstract model
of parallel execution.
Runtime QEP Adjustment. The objective of runtime QEP adjust-
ment is to minimize the overall completion time of a data-intensive
query in an unstable geo-distributed environment. However, at
any point in time, given the parts of the query that have already
been executed, the search space for optimal ordering of remaining
joins is still exponentially large. To enable swift decision making,
Turbo continuously adapts the QEP to runtime dynamics by greed-
ily choosing the next pairwise join with the least lookahead cost. In
Sec. 5.2, we propose three greedy policies, evaluating such looka-
head cost in three different perspectives. Although the proposed
greedy policies are still suboptimal—the optimal dynamic policy
is impossible to be derived without knowing the entire bandwidth
time series before query execution, yet these policies are fast and
can keep up to instantaneous bandwidth changes. We show that
they can effectively make positive online adjustments to reduce
query completion time in real experiments based on real-world
data.
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Table 1: The raw features.

Raw Features Range

total_exec_num 1 − 16
cpu_core_num 1 − 8 per executor
mem_size 1 − 4 GB per executor
avail_bw 5 − 1000 Mbps per link
tbl1_size, tbl2_size 0.3 − 12 GB per table
hdfs_block_num 1 − 90

4 BUILDING COST MODELS
In this section, we describe our machine learning models based on
LASSO, Gradient Boosting Regression Tree (GBRT) and extensive
feature crafting for predicting the time cost and output cardinality
of each pairwise join between a pair of tables, which will serve as
a basis for our dynamic QEP adjustment schemes. We created a
dataset of 15K samples by running the realistic TPC-H benchmark
queries and collecting the corresponding statistics, which we call
features.

Our basic idea is to consider all raw features relevant to the
running time and output size as well as all intuitively possible
nonlinear interactions across these raw features, and then rely on
LASSO, a powerful dimension reduction tool, to pick out only the
key (derived) features. These selected features are further input to
GBRT to characterize their nonlinear contribution toward the target
to be predicted. We show that the proposed models can achieve a
prediction accuracy of over 95% on this dataset.

4.1 Dataset Creation
We built a new dataset of 15K samples, each recording the time it
took to run a (possibly complex) query from TPC-H benchmark [13]
and its output size, as well as a number of features related to the
query execution. Each query in the dataset takes two tables gen-
erated by TPC-H dbgen [13] as the two input tables, each located
on a different datacenter. Since the shuffling during reduce stages
forms a major bottleneck in geo-distributed analytics, we focus on
JOIN-like operators between the pair of tables such as Cartesian
product, natural join and theta-join, which lead to heavy network
shuffle traffic.

We ran different types of pairwise joins under varied combi-
nations of input features. These features are related to the query
itself, the input tables involved, and the running environment, the
latter including hardware configuration, network bandwidth and
parameter settings in the underlying Spark system. These features
are summarized in Table 1. The feature, total_executor_num, rep-
resents the number of executors involved in the execution of the
join and dictates the maximum number of tasks executed simulta-
neously. The features, cpu_core_num and mem_size, are the upper
bounds of computing resources that each worker can utilize. The
feature, avail_bw, indicates the available bandwidth between the
two sites storing the two tables. During dataset creation, the vary-
ing bandwidth was obtained via tc rule based bandwidth regulation.
tbl1_size, tbl2_size are the actual sizes of the generated tables,
ranging from 300 MB to 12 GB, as we focus on large tables and
data-intensive jobs. Finally, hdfs_block_num indicates both the

Table 2: The handcrafted features.

Handcrafted Features

tbl_size_sum = sum(tbl1_size, tbl2_size)

max_tbl_size = max(tbl1_size, tbl2_size)
min_tbl_size = min(tbl1_size, tbl2_size)
1/avail_bw, 1/total_exec_num, 1/cpu_core_num

input data size and the number of parallel tasks, i.e., the parallelism
of data processing.

Once a model is trained offline based on the created dataset, we
can estimate the cost of executing any pairwise joins online, based
on instantaneous measurements of these features in the runtime
system. All the features selected can be easily measured or acquired
online during query execution in a non-intrusive manner without
interfering with query execution. In particular, in Sec. 5, we will
introduce our lightweight and non-intrusive scheme for online
bandwidth probing. Besides, it is also easy to incrementally expand
the training dataset by including statistics from recently executed
queries. And the models can easily be retrained periodically.

4.2 Crafting the Nonlinear Feature Space
Since the query completion time and output cardinality may de-
pend on input features in a nonlinear way, we further leverage
the intuitions about geo-distributed analytics to craft some derived
features based on the interaction of raw features. Our additional
handcrafted nonlinear features are also shown in Table 2. Further-
more, we apply feature crossing to both raw features and hand-
crafted features to obtain polynomial features, which significantly
expand the dimension of the feature space. For example, the degree-
2 polynomial features of a 3-dimensional feature space [a,b, c] are
1,a,b, c,a2,ab,ac,b2,bc, c2.

The rationale of using handcrafted features and feature cross-
ing is to incorporate important nonlinear terms that may possi-
bly help decide the completion time. For example, in a broadcast
join, min(tbl1_size, tbl2_size)/avail_bw may decide the shuf-
fle time, since the smaller table will be sent to the site of the larger
table for join execution. Similar ideas of using such intuitive pre-
dictors have been adopted in Ernest [33], which performs a linear
regression of non-linear interactions between system parameters to
predict the time to execute a data analytics job in a cluster. Similarly,
the optimization-based methods in Clarinet [34] and Iridium [29]
have also assumed that the data transmission time depends on
the table sizes divided by the available bandwidth in a linear way.
However, it is worth noting that the available bandwidth is only
loosely related to data transmission time, since it only defines an
upper bound of available bandwidth, which the distributed com-
puting engine can hardly fully saturate due to a number of reasons
mentioned in Sec. 1.

Our statistical feature engineering and selection approach is a
generalization of the above ideas—we first expand the feature space
to as large as possible to incorporate all intuitively possible nonlin-
ear interactions between relevant parameters, and then rely on the
ability of LASSO to select only the relevant ones in a statistical way.
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Figure 6: Feature selection by LASSO path.

Our machine learning approach abstracts away the excessive de-
tails in the underlying Spark system, including task placement and
scheduling decisions, which would otherwise have to be considered
by an optimization method like Clarinet [34] and Iridium [29].

4.3 Machine Learning Models
To keep Turbo lightweight and efficient, our chosen models must
be accurate and fast.
LASSO regression augments linear regression to perform sparse
feature selection by introducing an L1 norm penalty to the least
squares cost function. Compared to linear regression, it can effec-
tively suppress overfitting by picking out only the relevant features
from the large polynomial feature space we have created. When
minimizing the cost function, the L1 penalty forces the coefficients
of irrelevant features to zero. After the degree-2 polynomial fea-
ture crossing, we have obtained more than 200 derived features.
We input all these features into LASSO, which automatically se-
lects the relevant key features (usually fewer than 10) and discards
the rest [16]. We plot the LASSO paths in Fig. 6 as the weight
placed on the L1 penalty decreases. As more weights are placed
onto the L1 penalty, the coefficients of some features become zero,
where only the most important features have non-zero coefficients.
For query completion time, the key features selected by LASSO

are max_tbl_size, tbl_size_sum, min_tbl_size, cpu_core_num,
max_tbl_size/bw, 1/bw2, total_exec_num, mem_size. For query
output size, the key features selected are max_tbl_size, tbl1_size,
tbl_size_sum, min_tbl_size2.
Gradient boosting regression tree (GBRT):we find that for out-
put size prediction, LASSO can already perform well. However, for
query completion time prediction, even if the key features are
selected, the completion time still depends on these selected fea-
tures in a nonlinear way. GBRT is a nonlinear machine learning
technique that uses an ensemble of weaker regression trees to
produce a single strong model. When building the model, GBRT
progressively fits a new regression tree hm (x) to the residual of the
previously fitted model Fm−1(x) in a stage-by-stage fashion, and
updates the current model Fm (x) by adding in the new tree, i.e.,
Fm (x) = Fm−1(x) + γmhm (x). Each tree hm (x) is fitted to the error
gradient of Fm−1(x) on the training samples x . GBRT improves the
model generalizability and avoids overfitting by combining a large
number of simple binary or ternary regression trees.

In our evaluation in Sec. 6.1, the GBRT we build contains 500
ternary regression trees. And the inputs to the GBRT only contain
the relevant (derived) features selected by LASSO, which can reduce
the prediction variance of GBRT.

LASSO regression and GBRT are statistic models that have much
less parameters than neural network models. The computation
complexity has been further reduced after feature selection by
LASSO. Training the two models on the 15K dataset only takes a
few minutes on a CPU-based server.

5 DYNAMIC QUERY ADJUSTMENT
In this section, we present the detailed policies used by Turbo to
adjust query execution plans dynamically at runtime. During the
execution of a QEP, given the parts of the query that have already
been executed, adjusting the remaining part of the QEP still involves
exponentially many possibilities of join reordering. To avoid a
large decision space and make the system respond fast to resource
availability fluctuations, Turbo greedily selects the pairwise join
with the lowest estimated cost to be executed next, according to
various proposed polices, while the cost of each candidate join is
predicted by our lookahead cost predictor to be described below.

5.1 Lookahead Cost Prediction
Let us first explain how the cost of each candidate join operation
in the remaining QEP can be predicted. Note that when a series
of joins are to be executed, the output results from a current join,
which serve as the input to the next join operation, may not re-
side on a single datacenter: an intermediate table is usually spread
across multiple sites, because the reduce tasks that generated such
intermediate results were placed on multiple sites by the system.

If the two input tables of a pairwise join to be evaluated are
indeed located on two sites, respectively, we can directly use the
trained machine learning models as described in Sec. 4 to predict
the duration of this join, by inputting instantaneously measured
features such as the bandwidth between two sites, the sizes of the
two tables, as well as a number of other parameters pulled from
the runtime system into the models as features.
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Figure 7: The divide-and-conquer heuristic.

On the other hand, however, if at least one of the two input tables
of the pairwise join is spread across multiple sites, as a result of the
previous computation, the way that this join is physically executed
will not strictly match the joins logged in the training dataset. In
this case, we need introduce additional mechanisms to be able to
leverage the trained models in the presence of distributed input
data. To address this issue, we use a divide-and-conquer approach
that splits the pairwise join that involves distributed input data
into multiple sub-joins, each between a subset of the left table and
a subset of the right table, where each subset only contains a part
of the left table or the right table stored on a single site.

In particular, our divide-and-conquer approach handles two
cases, as shown in Fig. 7(b). If only one table is distributed across
multiple sites, we cascade the sub-joins sequentially to predict the
duration of the join, as shown in Fig. 7(a). If, however, two in-
put tables are both distributed across multiple sites, e.g., involving
3 × 3 = 9 sub-joins as shown in Fig. 7(b), the total duration for the
join can be predicated asT = max(t1+t2+t3, t4+t5+t6, t7+t8+t9),
by executing the sub-joins involving the same subset of the left
table sequentially in a cascaded way, while executing sub-joins
involving different subsets of the left table in parallel.

5.2 Runtime QEP Adjustment
By focusing on join reordering, Turbo’s query optimizer is a shim
layer that wraps the default query optimizer (or any advanced
query optimizer) of the underlying distributed computing engine
such as Hive and Spark SQL, deployed on the master node of the
distributed computing engine. During query execution, the cost of
each candidate join operation to be executed next can be estimated
according to the lookahead cost predictor described above. Such
estimates are fed into the query optimizer that chooses the next
join in terms of three different policies, to greedily reduce a query’s
overall completion time. The greedy nature of decision making,
together with the ability of predicting the costs of pairwise joins

online prior to their execution, enables Turbo to make fast and
timely decisions regarding QEP adjustments, to respond to runtime
dynamics.

Turbo performs the iterative process of cost prediction and QEP
adjustment in a stage-by-stage pipelined fashion. During the map
stage of an ongoing pairwise join, Turbo probes the available WAN
bandwidth in the network to avoid bandwidth contention, since
map stages are not bandwidth-intensive and can also finish fast.
During the reduce stage of the ongoing pairwise join, Turbo collects
the distribution of the reduce tasks, which can be used to estimate
the input data distribution for the next join, since the input of
a next join consists of the output data from the ongoing join(s)
and possibly some new table. The measured available bandwidth
information as well as the estimated input data distribution are
used to estimate the time cost of a next join operation using the
method mentioned above.

5.3 Adjustment Policies
When adjusting a QEP, Turbo respects both the semantics of the
SQL query and the context of the underlying distributed computing
engine. The semantics of the SQL query define the set of all can-
didate pairwise joins. The execution context limits the choices for
the next join: the next join must be chosen to preserve the part of
the QEP that has already been executed. After pruning unqualified
pairwise joins, Turbo explores three greedy policies to choose the
next pairwise join, based on the estimated durations and/or output
sizes of all candidate joins:
Shortest Completion Time First (SCTF) selects the next pair-
wise join to be the one that is predicted to have the least completion
time. This policy is intuitive because the overall query completion
time is the summation of the completion time of each pairwise join.
Maximum Data Reduction First (MDRF) selects the next pair-
wise join to be the one that is predicted to lead to the maximum
difference in volume between the input data and output data. The
maximum data reduction implies that less data will be transferred
over the network later on, thus saving the query execution time in
a geo-distributed setting.
MaximumDataReductionRate First (MDRRF) selects the next
pairwise join to be the one that is predicted to maximize the data
reduction rate, which is defined as the volume of data reduced per
unit time for the operation, that is its total input size less output size
divided by the predicted join completion duration. This policy takes
into account both data reduction and the time needed to achieve
that amount of data reduction.

Turbomakes extremely fast decisions, in fact within less than one
second, for the choice of the next join be executed, since once the
machine learning models are maintained, the predictions are instan-
taneous and the number of candidate joins to be compared is not
large due to the SQL semantic and execution context constraints. In
an environment where significant bandwidth fluctuations are only
observed over minutes, Turbo is perfectly competent to generate
valid QEP adjustments dynamically.
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Figure 8: Analysis of model test errors.

6 IMPLEMENTATION AND EVALUATION
We implemented the prototype of Turbo in Scala 2.11 and Python 2.7.
Themachine learningmodule is developedwith scikit-learn 0.19
and the query optimizer is built on Spark SQL 2.0.2. The interfaces
between the machine learning module, the query optimizer and
the Spark scheduler are implemented by Apache Thrift (scrooge
4.13 for Scala and thrift 0.10 for Python). We have developed a
toolkit3 for collecting training data with the RESTful APIs of the
Spark’s history server. We have also extended the HDFS command
put to specify data nodes for data partitions of different tables4.

We launch a 33-instance cluster across the eight regions of
Google Cloud Compute Engine [18]. Each of the instances has
4 vCPU cores, 15 GB memory and 120 GB SSD and runs Ubuntu-
16.04 with Oracle Java 1.8.0. We build the data analytic frameworks
with HDFS 2.7.3 as the persistent storage backend, Hive 1.2.1 as the
structured data warehouse and Spark 2.0.2 as the data processing
engine.

Our experiments show Turbo can effectively adjust QEPs in
corresponding to fluctuatingWAN conditions and reduces the query
completion times from 12.6% to 41.4%.

6.1 Model Evaluation
We evaluate both the machine learning models on the 15K dataset
created and select the most accurate model for predicting durations
and output sizes, respectively.

We use randomly selected 10% of the 15K samples as the test set
and the remaining 90% as the training set. The root-mean-squared
errors (RMSEs) of LASSO are 54.14 seconds for predicting the dura-
tions and 301.49 KB for predict output sizes, while the RMSEs of
GBRT are 9.41 seconds for durations and 282.4 KB for output sizes.

3https://github.com/chapter09/sparkvent
4https://github.com/chapter09/hadoop/tree/putx

We then analyze the test error distribution of different models in
terms of the absolute percentage error (APE), which is calculated
as APEi = |yi − h(xi )|/yi × 100%. Fig. 8(a) and Fig. 8(d) present
the box plots of the test APEs for duration predictions and output
size predictions. GBRT-raw denotes the GBRT model taking all
raw features as input, which have not been selected by LASSO. By
comparing the average APEs achieved by GBRT and GBRT-raw,
it demonstrates that using features selected by LASSO improves
the model accuracy. As we can see, for duration prediction, GBRT
achieves much lower errors compared to the other two models;
and for the output size prediction, LASSO effectively keeps APEs
under 16% and performs better than the other two models, though
its RMSE is bit higher than that of GBRT. By jointly considering the
RMSEs and APEs in Fig. 8, we choose GBRT to predict durations of
pairwise joins and LASSO to predict output sizes in Turbo.

We further investigate the correlation between test errors and
the predicted targets. Through the scatter plots in Fig. 8(b), and
Fig. 8(e), we observe a decreasing trend of the absolute percentage
error (APE) in general as the true duration or the true output size
of the pairwise join increases, while the absolute errors do not
increase much as the true durations and output sizes scale up to
large values. This fact indicates that our machine-learning-based
method has a higher accuracy when handling large tables, which
are common in big data analytics.

Finally, we note that the models can achieve higher accuracy as
the size of the training set increases. We test the GBRT model and
the LASSO model trained on datasets of different sizes, which are
subsets of the 15K dataset. As shown in Fig. 8(c) and Fig. 8(f), as the
training dataset becomes larger, the APEs of both models decrease
significantly.

https://github.com/chapter09/sparkvent
https://github.com/chapter09/hadoop/tree/putx
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Figure 9: Query completion times.

6.2 Turbo Performance
We use the dataset from the TPC-H benchmark [13], which con-
tains eight relational tables. The tables are stored as structured data
in Hive with the HDFS as the storage backend. The tables are dis-
tributed as lineitem (Taiwan), customer (Frankfurt), region (Sin-
gapore), orders (Sao Paulo), supplier (Sydney), nation (Northern
Virginia), part (Belgium), and partsupp (Oregon). The data distri-
bution is maintained as a metadata attribute in Hive.

TPC-H benchmark [13] contains 22 queries with broad industry-
wide relevance. Among the 22 queries, we ignore those queries that
process only one or two tables, as there is no alternative joins when
performing the QEP adjustment. We run the remaining 10 TPC-H
queries (Q2, Q3, Q5, Q7, Q8, Q9, Q10, Q11, Q18 and Q21) under the
following five schemes to evaluate Turbo. The first two schemes are
used for comparison. The other three schemes are Turbo configured
with the three greedy policies respectively.
• Baseline: the default query optimizer [7] of Spark SQL which
is agnostic to the fluctuating bandwidths. It only considers the
cardinalities of tables when selecting the join algorithms.

• Clarinet: the optimal query plan is determined by the band-
widths and data distribution when the query is submitted. This
is an approximation5 to Clarinet [34].

• Turbo-(SCTF, MDRF and MDRRF): With awareness of net-
work bandwidth and data cardinalities, Turbo applies three dif-
ferent greedy policies to choose the next join to run.
As in Fig. 9, we run the ten queries on the cluster including 33

instances across the eight regions under the five schemes. Each
region contains four instances, and the extra instance is configured
as the master node. For each of the five schemes, we run the ten
queries for five times and record the query completion times.

Fig. 10(a) shows baseline and Clarinet both have severe long tail
delay on pairwise join completion times. As in Fig. 10(b), compared
5It should be noted we do not perform bandwidth reservation and task placement. The
bandwidth reservation is performed by Clarinet’s WAN manager, a component that is
privileged to operate MPLS-based or SDN-based WAN. The original Clarinet should
have better performance with such capabilities, though which are closed source.
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Figure 10: CDF of completion times.

to the baseline, the overall query completion times is reduced by
25.1% to 38.5% for Turbo-SCTF (32.6% on average), 12.6% to 37.1%
for Turbo-MDRF (27% on average) and 25.2% to 41.4% for Turbo-
MDRRF (34.9% on average).

We plot all the stage completion times in Fig. 11. Compared to the
baseline and Clarinet, the three policies of Turbo have reduced the
maximum stage completion times for most stages, which indicates
there are less delayed stages. Turbo-MDRF fails to choose the right
join when running query Q10.

Then we perform a in-depth case study on query Q21. We run
the query Q21 from the TPC-H benchmark under the five schemes
to show how Turbo adapts a QEP to the fluctuating WAN. The
query Q21 processes four tables, lineitem, orders, nation and
supplier. We launch six clusters of the same hardware configura-
tion as mentioned. Each cluster is composed of four instances from
four regions respectively, i.e., Brazil, Taiwan, Sydney and Virginia.
Five of the clusters run query Q21 simultaneously in terms of the
five schemes. The remaining one cluster runs iperf to periodi-
cally measure bandwidths between the four regions, which avoids
contending bandwidths with the five clusters running Q21.

In Fig. 12, we plot a Gantt chart to show the progress of the
query Q21 running under the five schemes, dealing with WAN
fluctuations. Two colors are used to distinguish different stages of
the running query. We also plot the bandwidths between each two
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Figure 12: The Gantt chart of the query Q21.

of the four regions according to the timeline of the query execution.
The fluctuating links are marked in black. As we can see from the
Gantt chart, Turbo-SCTF and Turbo-MDRRF both adjust the QEP
plan to react the bandwidth fluctuation between Taiwan and Sydney
around 5:25. Turbo-MDRF does not change the QEP since it only
considers the volume of data reduction.

7 RELATEDWORK
A number of recent studies have attempted to improve the per-
formance of geo-distributed data analytics (GDA). Turbo adds to
the rich literature on query optimization in both distributed data-
base systems and big data analytics frameworks. Essentially, Turbo
shows how to enable the query optimizer to react to runtime dy-
namics.

The sub-optimality of static query execution plans has been a
thorny problem. For traditional databases, progressive optimization
(POP) [21, 28] has been proposed to detect cardinality estimation
errors at runtime. For data analytics within a single datacenter,
PILR [24] executes part of the query as a “pilot run” for dynamic
cost estimation. RoPE [1] enables re-optimization of query plans
by interposing instrumentation code into the job’s dataflow. Turbo
leverages the interpretation from pairwise joins to map-reduce
stages and orchestrates query execution plans across datacenters
without refactoring the existing data analytic frameworks.

Most existing work has explored low-layer optimizations to im-
prove GDA query performance such as data placement and task
scheduling. Iridium [29] seeks a tradeoff between data locality
and WAN bandwidth usage by data movement and task scheduling.
Geode [35] jointly exploits input data movement and join algorithm
selection to minimize WAN bandwidth usage. WANalytics [36]
optimizes and replicates data to minimize total bandwidth usage.
JetStream[30] uses data aggregation and adaptive filtering to sup-
port data analytics. SWAG [22] coordinates job scheduling across
datacenters to take advantage of data locality and improves GDA
performance. Graphene [20] packs and schedules tasks to reduce
job completion times and increases cluster throughput. Lube [37]
incorporates the awareness of underlying resource bottlenecks into
task placement and job scheduling.

The closest work to us is Clarinet [34], which selects the optimal
query execution plan based on the WAN condition before the query
is executed. Once a plan is selected, Clarinet leaves it oblivious to
the varying runtime environment.

However, most of the existing solutions require the full stack
of the original data processing frameworks to be re-engineered.
Turbo has carefully designed a machine learning module to enable
online query planning non-intrusively. A few efforts have been
made to perform resource management with machine learning
techniques [14, 27], workload classification [33], cluster configura-
tion [2] and database management system tuning [32].

8 CONCLUSION
In this paper, we have presented our design and implementation
of Turbo, a lightweight and non-intrusive system that orchestrates
query planning for geo-distributed analytics. We argue that, in or-
der to optimize query completion times, it is crucial for the query
execution plan to be adaptive to runtime dynamics, especially in
wide-area networks. We have designed a machine learning module,
based on careful choices of models and fine-tuned feature engi-
neering, that can estimate the time cost as well as the intermediate
output size of each reduce and shuffle stage (including joins) during
query execution given a number of easily measurable parameters,
with an accuracy of over 95%. Based on quick cost predictions made
online in a pipelined fashion, Turbo dynamically and greedily alters
query execution plans on-the-fly in response to bandwidth varia-
tions. Experiments performed across geo-distributed Google Cloud
regions show that Turbo reduces the query completion times by up
to 41% based on the TPC-H benchmark, in comparison to default
Spark SQL and state-of-the-art optimal static query optimizers for
geo-distributed analytics.
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